1
|
Anandhan R, Prasanth K, Nithishkumar P. Purple light-induced Ritter-type reaction of diazophosphonates: access to α-amido-β-keto phosphonates. Org Biomol Chem 2024; 22:8401-8406. [PMID: 39329525 DOI: 10.1039/d4ob01212g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A Ritter-type reaction of diazophosphonates to synthesize α-amido-β-keto phosphonates has been reported in this study under purple light in the absence of a photocatalyst. This protocol shows that the synthesis of the amide functionality involves in situ generation of a carbene, followed by C-N bond formation with a nitrile. The purple LED irradiation alone is sufficient for the efficient transformation to afford synthetic routes to various amide moieties. A rationalization of the reaction mechanism was well supported by control experiments. A library of α-amido-β-keto phosphonates has been well documented for the synthetic community.
Collapse
Affiliation(s)
- Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
| | - Kesavan Prasanth
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
| | | |
Collapse
|
2
|
Yin D, Lu L, Jiang Y, Dou Y, Fu MC, Zhu Y, Fan S. 1,2-Amidoarylcarbonylation of Styrenes to Access β-Acylamino Ketones by NHC-Catalyzed Radical Relay. J Org Chem 2024; 89:13085-13092. [PMID: 39197017 DOI: 10.1021/acs.joc.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
An amidoarylcarbonylation reaction of aromatic aldehydes and olefins with Katritzky pyridinium salts by N-heterocyclic carbene (NHC)-catalyzed radical relay to construct C-C and C-N bonds with good functional group tolerance is developed for the synthesis of β-acylamino ketones. This gentle and efficient approach offers a valuable style for the synthesis of β-acylamino ketones. Mechanistic studies revealed that a radical addition/coupling/elimination cascade process was involved in this reaction.
Collapse
Affiliation(s)
- Dengyu Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lishuai Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ying Jiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yandong Dou
- Anhui Heryi Pharmaceutical Co., Ltd., Chuzhou 239000, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanwu Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, China
| |
Collapse
|
3
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Xie ZY, Xuan J. Advances in heterocycle synthesis through photochemical carbene transfer reactions. Chem Commun (Camb) 2024; 60:2125-2136. [PMID: 38284428 DOI: 10.1039/d3cc06056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Heterocyclic skeletons are commonly found in various bioactive molecules and pharmaceutical compounds, making them crucial in areas such as medicinal chemistry, materials science, and the realm of natural product synthesis. In recent years, the rapid advancements of visible light methodologies in organic synthesis have shown promising potential for the development of light-induced carbene transfer reactions. This is particularly significant as most organic molecules do not absorb visible light. Free carbene, known for its high activity, is frequently utilized for insertion reactions or cyclopropanation reactions. This review focuses on the photochemical strategy for the construction of heterocyclic skeletons, specifically highlighting the methods that employ visible light-promoted carbene transfer reactions.
Collapse
Affiliation(s)
- Zi-Yi Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
6
|
Wang X, Wu S, Yang R, Song H, Liu Y, Wang Q. Recent advances in combining photo- and N-heterocyclic carbene catalysis. Chem Sci 2023; 14:13367-13383. [PMID: 38033906 PMCID: PMC10685334 DOI: 10.1039/d3sc03274d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
N-Heterocyclic carbenes (NHCs) are unique Lewis basic catalysts that mediate various organic transformations by means of polarity reversal. Although the scope of research on two-electron reactions mediated by NHC catalysts has been expanding, the types of these reactions are limited by the inability of NHCs to engage sp3-electrophiles. However, the revival of photocatalysis has accelerated the development of free-radical chemistry, and combining photoredox catalysis and NHC catalysis to achieve NHC-mediated radical reactions under mild conditions could overcome the above-mentioned limitation. This review summarizes recent advances in combining photoredox and NHC catalysis, focusing on elucidation and exploration of mechanisms, with the aim of identifying challenges and opportunities to develop more types of catalytic models.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Senhui Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
7
|
Wang JM, Zhao Y, Li WP, Kong XJ, Yao CS, Zhang K. Synthesis of tetracyclic dibenzo[ b, f][1,4]oxazepine-fused β-lactams via visible-light-induced Staudinger annulation. Org Biomol Chem 2023; 21:7106-7114. [PMID: 37610712 DOI: 10.1039/d3ob01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An efficient visible-light-induced Staudinger [2 + 2] annulation reaction between α-diazo ketones and dibenzo[b,f][1,4]oxazepine/thiazepine-imines under catalyst-free conditions has been developed. This protocol provides a facile method to synthesize tetracyclic dibenzo[b,f][1,4]oxazepine/thiazepine-fused β-lactams bearing a quaternary carbon center with a broad substrate scope and high efficiency (37 examples, up to >99% yield).
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, P. R China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shanxi 716000, P. R. China
| | - Wen-Ping Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| | - Xiang-Jun Kong
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, P. R China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| |
Collapse
|
8
|
Weinzierl D, Piringer M, Zebrowski P, Stockhammer L, Waser M. Photochemical Wolff Rearrangement Initiated Generation and Subsequent α-Chlorination of C1 Ammonium Enolates. Org Lett 2023; 25:3126-3130. [PMID: 37098273 PMCID: PMC10167681 DOI: 10.1021/acs.orglett.3c00986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 04/27/2023]
Abstract
The enantioselective synthesis of α-chlorinated carboxylic acid esters with er up to 99:1 and yields up to 82% was achieved via a one-pot multistep protocol starting from α-diazoketones. This process proceeds via a photochemical Wolff rearrangement, trapping of the generated ketene with a chiral Lewis base catalyst, subsequent enantioselective α-chlorination, and a final nucleophilic displacement of the bound catalyst. The obtained products were successfully utilized for stereospecific nucleophilic displacement reactions with N- and S-nucleophiles.
Collapse
Affiliation(s)
- David Weinzierl
- Institute
of Organic Chemistry, Johannes Kepler University
Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Magdalena Piringer
- Institute
of Organic Chemistry, Johannes Kepler University
Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Paul Zebrowski
- Institute
of Organic Chemistry, Johannes Kepler University
Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Lotte Stockhammer
- Institute
of Organic Chemistry, Johannes Kepler University
Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Mario Waser
- Institute
of Organic Chemistry, Johannes Kepler University
Linz, Altenbergerstr. 69, 4040 Linz, Austria
| |
Collapse
|
9
|
Morales-Manrique C, Baquero EA, Guevara-Pulido J. Recent Advances in the Synthesis of 3,4-Dihydropyran-2-Ones Organocatalyzed by N-Heterocyclic Carbenes. Molecules 2023; 28:molecules28093743. [PMID: 37175154 PMCID: PMC10179788 DOI: 10.3390/molecules28093743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, N-heterocyclic carbenes (NHC) have gained recognition as versatile molecules capable of acting as organocatalysts in various reactions, particularly through the activation of aldehydes via Breslow-type adducts. This organocatalytic activation has enabled the production of numerous 3,4-dihydropyran-2-ones and related derivatives. In this review, we provide an overview of the production of 3,4-dihydropyran-2-ones and derivatives via organocatalytic processes involving NHCs over the past eight years. These processes involve the use of a diverse range of substrates, catalysts, and reaction conditions, which can be classified into [4+2]-and [3+3]-type cycloadditions, primarily aimed at synthesizing this skeleton due to its biological activity and multiple stereocenters. These processes are scaled up to the gram scale, and the resulting products are often directed towards epimerization and functionalization to produce more complex molecules with potential applications in the biological field. Finally, we provide a perspective and the future directions of this topic in organic synthesis.
Collapse
Affiliation(s)
- Camilo Morales-Manrique
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| | - Edwin A Baquero
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
| | - James Guevara-Pulido
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| |
Collapse
|
10
|
Zhao Q, Chen BH, Li HP, Yu TT, Peng C, He XH, Huang W. Highly diastereoselective [3+3] cycloaddition of indolin-3-ones and nitroallylic acetates: Efficient access to polysubstituted dihydropyrano[3,2-b]indoles. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Wang J, Chen Y, Yao C, Zhang K. Catalyst‐free Synthesis of Benzothiazolopyrimidines
via
Visible‐Light‐Induced Wolff Rearrangement/[4+2] Cycloaddition Process. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiao‐Mei Wang
- School of Materials and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P. R China
| | - Yang‐Xu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Chang‐Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials School of Chemistry and Materials Science Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| |
Collapse
|
12
|
Chu Y, Wu M, Hu F, Zhou P, Cao Z, Hui XP. N-Heterocyclic Carbene-Catalyzed Atroposelective Synthesis of Pyrrolo[3,4- b]pyridines with Configurationally Stable C-N Axial Chirality. Org Lett 2022; 24:3884-3889. [PMID: 35609114 DOI: 10.1021/acs.orglett.2c01519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first atroposelective synthesis of pyrrolo[3,4-b]pyridines catalyzed by N-heterocyclic carbene has been achieved. A wide range of chiral atropisomers of pyrrolo[3,4-b]pyridines were obtained in high yields with excellent enantioselectivities (96-99% enantiomeric excess). The experimental results and density functional theory calculations showed that the C-N axial chirality of the product had high thermal stability.
Collapse
Affiliation(s)
- Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhengqiang Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Mondal S, Ghosh A, Biju AT. N-Heterocyclic Carbene (NHC)-Catalyzed Transformations Involving Azolium Enolates. CHEM REC 2022; 22:e202200054. [PMID: 35562645 DOI: 10.1002/tcr.202200054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The recent advances in the N-heterocyclic carbene (NHC)-organocatalyzed generation of azolium enolate intermediates and their subsequent interception with electrophiles are highlighted. The NHC-bound azolium intermediates are generated by the addition of NHCs to suitably substituted aldehydes, acid derivatives or ketenes. A broad range of coupling partners can intercept the azolium enolates to form [2+n] cycloadducts (n=2,3,4) and various α-functionalized compounds. The enantioselective synthesis of the target compounds are achieved with the use of chiral NHCs. Herein, we summarized the development that occurred in this subclass of NHC catalysis.
Collapse
Affiliation(s)
- Santigopal Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| |
Collapse
|
14
|
Bay AV, Farnam EJ, Scheidt KA. Synthesis of Cyclohexanones by a Tandem Photocatalyzed Annulation. J Am Chem Soc 2022; 144:7030-7037. [PMID: 35316053 PMCID: PMC9050940 DOI: 10.1021/jacs.1c13105] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rapid synthesis of cyclic scaffolds is of high importance to the chemistry community. Strategies for the convergent synthesis of substituted carbocycles and heterocycles remain underexplored despite the plethora of applications that these cyclic motifs have in the pharmaceutical and materials industries. Reported herein is a tandem carbene and photoredox-catalyzed process for the convergent synthesis of substituted cycloalkanones via a formal [5 + 1] cycloaddition. Featuring two distinct photoredox cycles and a novel α-oxidation of benzylic ketones, this reaction offers a mild approach to construct two contiguous C-C bonds and eliminates the need for strong bases or expensive metal catalysts. The utility of this method is highlighted through various product diversification reactions that allow access to a range of important cyclic scaffolds.
Collapse
Affiliation(s)
- Anna V Bay
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emelia J Farnam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Ishida K, Kusama H. Generation of (amino)(boryloxy)carbenes from carbamoylboranes and their coupling reaction with aldehydes. Chem Commun (Camb) 2022; 58:1625-1628. [PMID: 35022628 DOI: 10.1039/d1cc06377d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbamoylboranes were found to react with various aldehydes under heating conditions to give α-hydroxycarboxamides in good yields. A DFT study supports the mechanism, which involves thermally generated (amino)(boryloxy)carbene intermediates. To our knowledge, this is the first report on the generation of (amino)(boryloxy)carbene intermediates from carbamoylboranes and its application to carbon-carbon bond-forming reactions.
Collapse
Affiliation(s)
- Kento Ishida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyuki Kusama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
16
|
Chen Y, Shi B, Yin H, Liu Y, Yu C, Zhang K, Li T, Yao C. Stereoselective synthesis of chiral sultam-fused dihydropyridinones via photopromoted NHC catalyzed [4 + 2] annulation. Org Chem Front 2022. [DOI: 10.1039/d2qo00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photopromoted NHC catalyzed asymmetric [4+2] annulation of saccharine-derived azadienes and α-diazoketones was developed, affording the corresponding sultam-fused dihydropyridinones efficiently (up to 80% yield, 99% ee and >20 : 1 d.r.).
Collapse
Affiliation(s)
- Yangxu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Bai Shi
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Huiping Yin
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Yinping Liu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| |
Collapse
|
17
|
Empel C, Pei C, Koenigs RM. Unlocking novel reaction pathways of diazoalkanes with visible light. Chem Commun (Camb) 2022; 58:2788-2798. [DOI: 10.1039/d1cc06521a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries...
Collapse
|
18
|
Visible-Light-Mediated Strategies to Assemble Alkyl 2-Carboxylate-2,3,3-Trisubstituted β-Lactams and 5-Alkoxy-2,2,4-Trisubstituted Furan-3(2H)-ones Using Aryldiazoacetates and Aryldiazoketones. Org Lett 2021; 23:9292-9296. [PMID: 34797682 DOI: 10.1021/acs.orglett.1c03662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two new visible-light-mediated strategies are described starting from aryldiazoacetates. The first approach describes their reaction with azides to afford the corresponding imines, and then reaction with aryldiazoketones produces alkyl 2-carboxylate-2,3,3-trisubstituted β-lactams. The second approach describes the reaction with sulfoxides to afford the corresponding sulfoxonium ylides, followed by reaction with aryldiazoketones to produce 5-alkoxy-2,2,4-trisubstituted furan-3(2H)-ones. These protocols take advantage of the photolysis of aryldiazoacetates and the photochemically promoted Wolff rearrangement of aryldiazoketones.
Collapse
|
19
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
20
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
21
|
Chen X, Lei Y, Fu D, Xu J. Microwave-accelerated and efficient synthesis of structurally diverse N-(2,2-diphenylvinyl)-β-oxoamides. Org Biomol Chem 2021; 19:7678-7689. [PMID: 34524331 DOI: 10.1039/d1ob01359a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-(2,2-Diphenylvinyl)-β-oxoamides are both the structural moiety of biologically active compounds and important synthetic intermediates. Structurally diverse N-(2,2-diphenylvinyl)-β-oxoamides are prepared efficiently from 2-diazo-1,3-dicarbonyl compounds and N-alkyl-2,2-diphenylaziridines via an electrophilic ring opening reaction under two different reaction conditions of reflux and microwave irradiation. 2-Diazo-1,3-dicarbonyl compounds undergo the Wolff rearrangement under heating to generate α-oxoketenes, which electrophilically react with N-alkylaziridines to directly produce structurally diverse N-(2,2-diphenylvinyl)-β-oxoamides in good to excellent yields under microwave irradiation. Microwave irradiation accelerates the reaction obviously and efficiently. Both 2-diazo-1,3-diketones and alkyl 2-diazo-3-oxoalkanoates work well. The reaction is catalyst-free and highly atom economical, involves only loss of nitrogen and does not require additives. The products are useful synthons for the convenient preparation of multisubstituted β-lactam derivatives.
Collapse
Affiliation(s)
- Xingpeng Chen
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,China Tianchen Engineering Corporation, Tianjin 300400, China
| | - Yelong Lei
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
22
|
Huang X, Chen X, Xie H, Tan Z, Jiang H, Zeng W. Visible-Light-Catalyzed in Situ Denitrogenative Sulfonylation of Sulfonylhydrazones. Org Lett 2021; 23:6784-6788. [PMID: 34406020 DOI: 10.1021/acs.orglett.1c02369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A photocatalyzed in situ denitrogenative sulfonylation of N-arylsulfonyl hydrazones has been developed. This transformation provides a low-carbon strategy to assemble arylalkyl sulfones in a stepwise denitrogenation/sulfonylation manner.
Collapse
Affiliation(s)
- Xiang Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xing Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zheng Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
23
|
Marzo L. Recent Advances in Organic Synthesis Using Light‐Mediated N‐Heterocyclic Carbene Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leyre Marzo
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid C/Francisco Tomás y Valiente, 7 Cantoblanco 28049 Madrid Spain
| |
Collapse
|
24
|
Zhao C, Blaszczyk SA, Wang J. Asymmetric reactions of N-heterocyclic carbene (NHC)-based chiral acyl azoliums and azolium enolates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Sarkar R, Mukhopadhyay C. Organocatalytic Synthesis of Heterocycles: A Brief Overview Covering Recent Aspects. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999201029234021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of small organic molecules as organocatalysts in organic synthesis has been intensely
studied over the past decade. In this emerging field, considerable studies have led to the introduction
of various efficient organocatalyzed synthetic methods of carbon-carbon and carbon-
heteroatom bond formations. The use of these organocatalysts also showed environmentally benign
reaction conditions compared to the metal-catalyzed transformations. In this review, we paid
special attention to the most recent organocatalytic protocols reported for the synthesis of heterocycles.
The studies have been outlined, depending on the organocatalysts used as: (i) nitrogen-based
molecules as organocatalyst, (ii) NHCs as organocatalyst, and (iii) phosphorus-based molecules as
organocatalysts. The discussion intends to reveal the scope as well as the vitality of organocatalysis
in the area of heterocycle synthesis.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
26
|
Di H, Liu Y, Ma Y, Yang X, Jin H, Zhang L. Recent Advances in Organocatalytic Asymmetric Synthesis of 3,4-Dihydropyran-2-ones and 3,4-Dihydropyridin-2-ones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Sun Z, Zhang C, Chen L, Xie H, Liu B, Liu D. Recent Advances in Catalytic Asymmetric Reactions Involving Trifluoroethyl Ketimines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
29
|
Dai L, Xu YY, Xia ZH, Ye S. γ-Difluoroalkylation: Synthesis of γ-Difluoroalkyl-α,β-Unsaturated Esters via Photoredox NHC-Catalyzed Radical Reaction. Org Lett 2020; 22:8173-8177. [PMID: 33021799 DOI: 10.1021/acs.orglett.0c03208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By the cooperative photoredox and N-heterocyclic carbene catalysis, the γ-difluoroalkylation of γ-preoxidized enals was developed for the synthesis of γ-difluoroalkyl-α,β-unsaturated esters with all-carbon quaternary centers. This method provides efficient catalytic C(sp3)-CF2R bond formation at the γ-position of carbonyl compounds for the first time.
Collapse
Affiliation(s)
- Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Xia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Visible light-promoted reactions with diazo compounds: a mild and practical strategy towards free carbene intermediates. Chem Soc Rev 2020; 49:6833-6847. [PMID: 32856627 DOI: 10.1039/d0cs00224k] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbenes are important intermediates in organic chemistry and have been widely applied in various types of organic reactions, ranging from cycloaddition reactions and sigmatropic rearrangements to C-H functionalizations, thus allowing the rapid construction of densely functionalized molecules. Over the past decades, remarkable progress has been achieved in metal-catalyzed carbene transfer reactions. Nevertheless, realizing these transformations under milder and/or greener conditions is still highly desirable. Only recently, visible light-promoted carbene transfer reactions of diazo compounds via free carbene intermediates have emerged as a practical, mild and powerful tool. In this tutorial review, we summarize the latest advances in the area, aiming at providing a clear overview on reaction design, mechanistic scenarios and potential future developments.
Collapse
Affiliation(s)
- Zhen Yang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Mateus L Stivanin
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Igor D Jurberg
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
31
|
Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. N-heterocyclic carbene-catalyzed radical reactions. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9851-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Liu J, Xing XN, Huang JH, Lu LQ, Xiao WJ. Light opens a new window for N-heterocyclic carbene catalysis. Chem Sci 2020; 11:10605-10613. [PMID: 34094315 PMCID: PMC8162372 DOI: 10.1039/d0sc03595e] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/08/2020] [Indexed: 01/01/2023] Open
Abstract
N-Heterocyclic carbenes (NHCs) are efficient Lewis basic catalysts for the umpolung of various polarized unsaturated compounds usually including aldehydes, imines, acyl chlorides and activated esters. NHC catalysis involving electron pair transfer steps has been extensively studied; however, NHC catalysis through single-electron transfer (SET) processes, despite having the potential to achieve chemical transformations of inert chemical bonds and using green reagents, has long been a challenging task in organic synthesis. In parallel, visible-light-induced photocatalysis and photoexcitation have been established as powerful tools to facilitate sustainable organic synthesis, as they enable the generation of various reactive radical intermediates under extremely mild conditions. Recently, a number of elegant visible-light-induced, NHC-catalyzed transformations were developed for accessing valuable organic compounds. As a result, this minireview will highlight the recent advances in this field.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China http://chem-xiao.ccnu.edu.cn
| | - Xiao-Ning Xing
- Anyang Academy of Agricultural Sciences 833 Wenming Road Anyang Henan China
| | - Jin-Hai Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China http://chem-xiao.ccnu.edu.cn
| | - Liang-Qiu Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China http://chem-xiao.ccnu.edu.cn
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China http://chem-xiao.ccnu.edu.cn
| |
Collapse
|
33
|
Mavroskoufis A, Jakob M, Hopkinson MN. Light‐Promoted Organocatalysis with N‐Heterocyclic Carbenes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andreas Mavroskoufis
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Michael Jakob
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Matthew N. Hopkinson
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| |
Collapse
|