1
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Xu D, Chang Y, Liu Y, Qin W, Yan H. Mechanistic Features of Asymmetric Vinylidene ortho-Quinone Methide Construction and Subsequent Transformations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Chang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
4
|
Lyu J, Claraz A, Retailleau P, Masson G. Divergent cyclodimerizations of styrylnaphthols under aerobic visible-light irradiation and Brønsted acid catalysis. Org Biomol Chem 2022; 20:9593-9599. [PMID: 36412533 DOI: 10.1039/d2ob01509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dimeric cyclization reactions show great potential to rapidly form highly substituted complex cyclic molecules from simple starting materials. However, such an appealing process is often hampered by the lack of selectivity. Herein we report two divergent cyclodimerization reactions of 1-styrylnaphthalen-2-ol derivatives under simple and very mild reaction conditions. A stereoselective visible light-induced oxidative (1 + 1 + 4 + 4) homodimerization gave rise to highly substituted 1,5-dioxocanes in moderate yields. This transformation harnessed singlet oxygen as a safe and mild oxidant under photocatalyst-free reaction conditions. Additionally, we demonstrated that the same substrates undergo a (4 + 2) heterodimerization under Brønsted-acid catalysis to produce chromane derivatives featuring 3 contiguous tertiary stereocenters in good to high yields with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Jiyuan Lyu
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France. .,HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, Porcheville, France
| |
Collapse
|
5
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
6
|
Qin W, Liu Y, Yan H. Enantioselective Synthesis of Atropisomers via Vinylidene ortho-Quinone Methides (VQMs). Acc Chem Res 2022; 55:2780-2795. [PMID: 36121104 DOI: 10.1021/acs.accounts.2c00486] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atropisomers, arising from conformational restriction, are inherently chiral due to the intersecting dissymmetric planes. Since there are numerous applications of enantiopure atropisomers in catalyst design, drug discovery, and material science, the asymmetric preparation of these highly prized molecules has become a flourishing field in synthetic chemistry. A number of catalysts, synthetic procedures, and novel concepts have been developed for the manufacture of the atropisomeric molecules. However, due to the intrinsic properties of different types of atropisomers featuring biaryl, hetero-biaryl, or non-biaryl architectures, only very few methods pass the rigorous inspection and are considered generally applicable. The development of a broadly applicable synthetic strategy for various atropisomers is a challenge. In this Account, we summarize our recent studies on the enantioselective synthesis of atropisomers using the vinylidene ortho-quinone methides (VQMs) as pluripotent intermediates.The most appealing features of VQMs are the disturbed aromaticity and axial chirality of the allene fragment. At the outset, the applications of VQMs in organic synthesis have been neglected due to their principal liabilities: ephemeral nature, extraordinary reactivity, and multireaction sites. The domestication of this transient intermediate was demonstrated by in situ catalytic asymmetric generation of VQMs, and the reactivity and selectivity were fully explored by judiciously modifying precursors and tuning catalytic systems. A variety of axially chiral heterocycles were achieved through five-, six-, seven- and nine-membered ring formation of VQM intermediates with different kinds of branched nucleophilic functional groups. The axially chiral C-N axis could be constructed from VQM intermediates via N-annulation or desymmetrization of preformed C-N scaffolds. We take advantage of the high electrophilicity of VQMs toward a series of sulfur and carbon based nucleophiles leading to atropisomeric vinyl arenes. Furthermore, chiral helical compounds were realized by cycloaddition or consecutive annulation of VQM intermediates. These achievements demonstrated that the VQMs could work as a nuclear parent for the collective synthesis of distinct and complex optically active atropisomers. Recently, we have realized the isolation and structural characterization of the elusive VQMs, which were questioned as putative intermediates for decades. The successful isolation of VQMs provided direct evidence for their existence and an unprecedented opportunity to directly investigate their reactivity. The good thermal stability and reserved reactivity of the isolated VQMs demonstrated their great potential as synthetic reagents and expanded the border of VQM chemistry.
Collapse
Affiliation(s)
- Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
7
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
8
|
Liu H, Li K, Huang S, Yan H. An Isolable Vinylidene ortho-Quinone Methide: Synthesis, Structure and Reactivity. Angew Chem Int Ed Engl 2022; 61:e202117063. [PMID: 35171537 DOI: 10.1002/anie.202117063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Commonly, an elusive intermediate is generated from a precursor and then trapped and consumed in a reaction. Vinylidene ortho-quinone methides (VQMs) have been demonstrated as transient axially chiral intermediates in asymmetric catalysis due to their orthogonal π-bonds forming an allene motif. The current understanding of VQMs is primarily based on time-resolved absorption, trapping experiments and computational studies. Herein, we report the first isolation and comprehensive characterization of a VQM, including crystallographic analysis. The disturbed aromaticity of the VQM led to its high reactivity as an electrophile or a 4π-component capable of asymmetric dearomatization of an electron-deficient phenyl group. Notably, the VQM could be isolated in enantiomerically enriched form, and the subsequent transformation was stereospecific, indicating that the generation of the VQM was involved in the enantiodetermining step. This study paves the way for the direct application of VQMs as starting materials.
Collapse
Affiliation(s)
- Hong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| |
Collapse
|
9
|
Liu H, Li K, Huang S, Yan H. An Isolable Vinylidene
ortho‐
Quinone Methide: Synthesis, Structure and Reactivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
10
|
Zhang W, Song R, Yang D, Lv J. Construction of Axially Chiral Styrenes Linking an Indole Moiety by Chiral Phosphoric Acid. J Org Chem 2022; 87:2853-2863. [DOI: 10.1021/acs.joc.1c02750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxuan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
He Y, Wu P, Zhang X, Wang T, Tao Q, Zhou K, Ouyang Z, Zhai H, Cheng DJ, Cheng B. Synthesis of aryl-fused 1,4-oxathiepines from pyridinium 1,4-zwitterionic thiolates and vinylidene ortho-quinone methides. Org Chem Front 2022. [DOI: 10.1039/d2qo00735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of aryl-fused 1,4-oxathiepines from pyridinium 1,4-zwitterionic thiolates with vinylidene ortho-quinone methides generated in situ via a formal (3 + 4) pathway.
Collapse
Affiliation(s)
- Yixuan He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Ping Wu
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Dezhou College, Dezhou 253023, China
| | - Xiang Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Taimin Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Qingqing Tao
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Kang Zhou
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Hongbin Zhai
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dao-Juan Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bin Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
12
|
Osyanin VA, Lukashenko AV, Osipov DV. Cycloaddition reactions of o-quinone methides with polarized olefins. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Zhu S, Li H, Fu R, Hao W, Wang S, Tu S, Jiang B. Regio‐ and Stereoselective Synthesis of Rotationally Hindered C
12
‐Naphthylated Tribenzo[
a,c,j
]xanthenes through Catalytic Tricyclization of Yne‐Allenones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shan‐Shan Zhu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Heng Li
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Rong Fu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Liang Wang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Bo Jiang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| |
Collapse
|
14
|
Zhang W, Wei S, Wang W, Qu J, Wang B. Catalytic asymmetric construction of C-4 alkenyl substituted pyrazolone derivatives bearing multiple stereoelements. Chem Commun (Camb) 2021; 57:6550-6553. [DOI: 10.1039/d1cc01123e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organocatalytic asymmetric process was reported for the sterically precise construction of C-4 alkenyl substituted pyrazolone derivatives bearing multiple stereoelements.
Collapse
Affiliation(s)
- Wande Zhang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Wenyao Wang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
15
|
Zhu CF, Zhang J, Zhu YL, Hao WJ, Tu SJ, Wang DC, Jiang B. A photoinduced arene–alkyne [3 + 2] cycloaddition cascade of 1-alkynylnaphthalen-2-ols for tunable synthesis of skeletally diverse bridged hexacycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00124h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photoinduced solvent-dependent cyclodimerizations of 1-alkynylnaphthalen-2-ols were developed for the first time, producing skeletally diverse bridged hexacyclic architectures with good yields and high stereoselectivities.
Collapse
Affiliation(s)
- Chi-Fan Zhu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
- School of Chemistry & Materials Science
| | - Jie Zhang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Yi-Long Zhu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - De-Cai Wang
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou
- P. R. China
| |
Collapse
|
16
|
Xu T, Lin N, Hao WJ, Zhang J, Li MF, Tu SJ, Jiang B. Synthesis of polycyclic indoles via organocatalytic bicyclization of α-alkynylnaphthalen-2-ols with nitrones. Chem Commun (Camb) 2020; 56:11406-11409. [PMID: 32853304 DOI: 10.1039/d0cc05027j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new organocatalytic bicyclization of α-alkynylnaphthalen-2-ols with nitrones was first reported, leading to the convergent synthesis of polycyclic indoles with substantial substitution diversity in generally good yields through scission of the N-O bond of nitrones via [3,3]-sigmatropic rearrangement. This transformation showcases the use of a quinine catalyst in a complicated cascade system that has been shown to effectively construct polycyclic heterocycles via alkyne difunctionalization.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | | | | | | | | | | | | |
Collapse
|