1
|
Niu X, Xie Y, Zhou H. Reductive Deuteration of Aldehydes/Ketones for the Synthesis of Monodeuterated Phosphinates and Derivatives Using D 2O as the Nucleophilic Deuterium Source. J Org Chem 2025; 90:6721-6725. [PMID: 40369952 DOI: 10.1021/acs.joc.5c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The ideal deuteration, for organic synthetic chemists, might include the use of a cheap deuterium source, mild operating conditions, and diverse transformations. We developed an umpolung sequence for the reductive deuteration of aldehydes/ketones, affording synthetically useful monodeuterated phosphinates. The further one-pot transformation and plausible mechanism of this reaction were studied.
Collapse
Affiliation(s)
- Xiaochen Niu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 341014, P. R. China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 341014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou 310014, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
2
|
Liu F, Dong J, Cheng R, Yin SF, Chen L, Su L, Qiu R, Zhou Y, Han LB, Li CJ. Direct carbonyl reductive functionalizations by diphenylphosphine oxide. SCIENCE ADVANCES 2025; 11:eads4626. [PMID: 39919176 PMCID: PMC11804924 DOI: 10.1126/sciadv.ads4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Reductive functionalization of aldehydes and ketones is one of the most challenging but ultimately rewarding areas in synthetic chemistry and related sciences. We report a simple and extremely versatile carbonyl reductive functionalization strategy achieving direct, highly selective, and efficient reductive amination, etherification, esterification, and phosphinylation reactions of (hetero)aryl aldehydes and ketones, which are extremely challenging or unattainable to achieve by traditional strategies, using only diphenylphosphine oxide and an inorganic base. It enables modular synthesis of functionally and structurally diverse tertiary amines, ethers, esters, phosphine oxides, etc., as well as related pesticides, drug intermediates, and pharmaceuticals. Compared to phosphorus-mediated name reactions, this strategy firstly transformed C═O bonds into C-element single bonds. Mechanistically, phosphinates are formed as intermediates, which undergo unconventional nucleophilic substitution at the C atom within their C─O─P unit. Thus, this work provides important strides in the field of reductive functionalization of aldehydes/ketones, phosphorus-mediated transformation, and various fundamental reactions.
Collapse
Affiliation(s)
- Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Ruofei Cheng
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, Quebec H3A0B8, Canada
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lang Chen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lebin Su
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Renhua Qiu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li-Biao Han
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, Quebec H3A0B8, Canada
| |
Collapse
|
3
|
Zheng C, Xue J, Jiang ZJ, Han J, Wang J, Bai JF, Chen J, Gao Z. Geometric constraints regulated regioselectivity: Pd-catalyzed α-deuteration of pyridines with secondary phosphine oxide. Chem Commun (Camb) 2024; 60:10338-10341. [PMID: 39212444 DOI: 10.1039/d4cc03089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A Pd-catalyzed regioselective H/D exchange at the α-position of pyridines was achieved by employing secondary phosphine oxide as an internal base. The proposed five-membered structure enabled the reaction to overcome its conventional ortho-directing feature, allowing the efficient deuteration of pyridines and quinolines at adjacent sites of N-atoms.
Collapse
Affiliation(s)
- Chenxu Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiben Xue
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaxin Wang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| |
Collapse
|
4
|
Zheng JY, Wang F, Zhang Y, Zheng Z, Wu JH, Ren X, Su Z, Chen W, Wang T. Novel Stereo-Induction Pattern in Pudovik Addition/Phospha-Brook Rearrangement Towards Chiral Trisubstituted Allenes. Angew Chem Int Ed Engl 2024; 63:e202403707. [PMID: 38520267 DOI: 10.1002/anie.202403707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Despite the significance of chiral allene skeletons in catalysis, organic synthesis and medicinal chemistry et al., there is a scarcity of reports on axially chiral allenyl phosphorus compounds. Here, we disclosed an efficient and straightforward cascade reaction between ethynyl ketones and phosphine oxides, resulting in a broad array of trisubstituted allenes incorporating a phosphorus moiety in high yields with excellent stereoselectivities facilitated by peptide-mimic phosphonium salt (PPS) catalysis, Additionally, comprehensive series of mechanistic experiments have been conducted to elucidate that this cascade reaction proceeds via an asymmetric Pudovik addition reaction followed by a subsequent phospha-Brook rearrangement that occurs concomitantly with kinetic resolution, representing a stereospecific rearrangement and protonation process facilitating central-to-axial chirality transfer in a cascade manner. We anticipate that our research will pave the way for a promising exploration of novel stereo-induction pattern in the Pudovik addition/phospha-Brook rearrangement cascade reaction.
Collapse
Affiliation(s)
- Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Fan Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Huang Y, Wang N, Wu ZG, Wu X, Wang M, Huang W, Zi Y. Sequential In Situ-Formed Kukhtin-Ramirez Adduct and P(NMe 2) 3-Catalyzed O-Phosphination of α-Dicarbonyls with P(O)-H. Org Lett 2023; 25:7595-7600. [PMID: 37830918 DOI: 10.1021/acs.orglett.3c02563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
O-Phosphination of α-dicarbonyls via sequential in situ formation of a Kukhtin-Ramirez adduct and a P(NMe2)3-catalyzed process has been exploited for the synthesis of α-phosphoryloxy carbonyls. A range of P(O)-H derivatives, including diarylphosphine oxides, arylphosphinates, and phosphinates, are competent candidates to be introduced into the α-dicarbonyls in this transformation, and various α-phosphoryloxy carbonyls are obtained. This approach possesses advantages of mild conditions, simple operations, atom economy, high efficiency, and gram-scale synthesis, which make it promising in the synthesis toolbox.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xinxing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
6
|
Luo W, Xu F, Wang Z, Pang J, Wang Z, Sun Z, Peng A, Cao X, Li L. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL-D05139β Potassium Salt. Angew Chem Int Ed Engl 2023; 62:e202310118. [PMID: 37594845 DOI: 10.1002/anie.202310118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton-Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139β, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.
Collapse
Affiliation(s)
- Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zixu Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhixiu Sun
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Aiyun Peng
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
7
|
Zhang S, Chen D, Wang JY, Yan S, Li G. Four-layer folding framework: design, GAP synthesis, and aggregation-induced emission. Front Chem 2023; 11:1259609. [PMID: 37638105 PMCID: PMC10450629 DOI: 10.3389/fchem.2023.1259609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
The design and synthesis of a type of [1 + 4 + 2] four-layer framework have been conducted by taking advantage of Suzuki-Miyaura cross-coupling and group-assisted purification (GAP) chemistry. The optimized coupling of double-layer diboronic esters with 1-bromo-naphth-2-yl phosphine oxides resulted in a series of multilayer folding targets, showing a broad scope of substrates and moderate to excellent yields. The final products were purified using group-assisted purification chemistry/technology, achieved simply by washing crude products with 95% EtOH without the use of chromatography and recrystallization. The structures were fully characterized and assigned by performing X-ray crystallographic analysis. UV-vis absorption, photoluminescence (PL), and aggregation-induced emission (AIE) were studied for the resulting multilayer folding products.
Collapse
Affiliation(s)
- Sai Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Daixiang Chen
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Shenghu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Sun LW, Hu YF, Ji WJ, Zhang PY, Ma M, Shen ZL, Chu XQ. Selective and Controllable Defluorophosphination and Defluorophosphorylation of Trifluoromethylated Enones: An Auxiliary Function of the Carbonyl Group. Org Lett 2023; 25:3745-3749. [PMID: 37167193 DOI: 10.1021/acs.orglett.3c01215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The auxiliary function of a carbonyl group in the tunable defluorophosphination and defluorophosphorylation of trifluoromethylated enones with P(O)-containing compounds was demonstrated. Controlled replacement of one or two fluorine atoms in trifluoromethylated enones while maintaining high chemo- and stereoselectivity was achieved under mild conditions, thus enabling diversity-oriented synthesis of skeletally diverse organophosphorus libraries─(Z)-difluoro-1,3-dien-1-yl phosphinates, (1Z,3E)-4-phosphoryl-4-fluoro-buta-1,3-dien-1-yl phosphinates, and (E)-4-phosphoryl-4-fluoro-1,3-but-3-en-1-ones─in good yields with excellent functional group tolerance.
Collapse
Affiliation(s)
- Li-Wen Sun
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ya-Fei Hu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Jun Ji
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng-Yuan Zhang
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Si L, Xiong B, Xu S, Zhu L, Liu Y, Xu W, Tang KW. Copper-Catalyzed Cross-Dehydrogenative Coupling of P(O)−H Compounds with O-/S-nucleophiles. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Quan L, Xiao Y, Zhou A, Zhu X, Mao L, Wan J. Visible‐Light‐Promoted Tandem Oxyphosphorylation Etherification of α‐Diazoesters to Access Phosphoric Esters. ChemistrySelect 2023. [DOI: 10.1002/slct.202204778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li‐Xia Quan
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Yi Xiao
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Anxi Zhou
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Xianhong Zhu
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Liu‐Liang Mao
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 PR China
- International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 PR China
| |
Collapse
|
11
|
Pyridine-promoted diazotization of P H bonds with aryl diazonium tetrafluoroborates: Synthesis of azo organophosphorus compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Kurosawa MB, Kato K, Muto K, Yamaguchi J. Unified synthesis of multiply arylated alkanes by catalytic deoxygenative transformation of diarylketones. Chem Sci 2022; 13:10743-10751. [PMID: 36320688 PMCID: PMC9491083 DOI: 10.1039/d2sc03720c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
A deoxygenative transformation of diarylketones leading to multiply arylated alkanes was developed. Diarylketones were reacted with diphenylphosphine oxide resulting in a phospha-Brook rearrangement, followed by palladium-catalyzed cross-couplings or a Friedel-Crafts type alkylation to afford the corresponding multiply arylated alkanes. A variety of diarylketones can be converted to multiply arylated alkanes such as diarylmethanes, tetraarylethanes, and triarylmethanes by reduction, dimerization, and arylation in one pot. Furthermore, a one-pot conversion from arylcarboxylic acids to diarylmethanes and tetraarylethanes, and a synthesis of tetraarylmethane and triphenylethane using sequential coupling reactions are also presented.
Collapse
Affiliation(s)
- Miki B Kurosawa
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Kenta Kato
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University 513 Wasedatsurumakicho Shinjuku Tokyo 162-0041 Japan
| |
Collapse
|
13
|
Qu C, Hao J, Ding H, Lv Y, Zhao XE, Zhao X, Wei W. Visible-Light-Initiated Multicomponent Reactions of α-Diazoesters to Access Organophosphorus Compounds. J Org Chem 2022; 87:12921-12931. [PMID: 36130274 DOI: 10.1021/acs.joc.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple visible-light-initiated strategy has been established for the construction of organophosphorus compounds via aerobic multicomponent reaction of α-diazoesters, cyclic ethers, and P(O)H compounds under air. A number of phosphonates and phosphinates could be efficiently isolated in moderate to good yields without the use of photosensitizers and metal reagents. This multicomponent reaction has advantages of mild condition, simple operation, eco-friendly energy, good functional-group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| |
Collapse
|
14
|
Yang J, Qian DW, Yang SD. Lewis acid-catalyzed Pudovik reaction-phospha-Brook rearrangement sequence to access phosphoric esters. Beilstein J Org Chem 2022; 18:1188-1194. [PMID: 36128430 PMCID: PMC9475178 DOI: 10.3762/bjoc.18.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Herein, we report a Lewis acid-catalyzed Pudovik reaction-phospha-Brook rearrangement sequence between diarylphosphonates or -phosphinates and α-pyridinealdehydes to access valuable phosphoric ester compounds. This transformation provides an extended substrate scope that is complementary to similar previously reported base-catalyzed transformations.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dang-Wei Qian
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Liu B, Li J, Hu Y, Chen Q, Liu Y, Ji S, Maruoka K, Huo Y, Zhang HL. Visible-Light-Induced α-C(sp 3)-H Phosphinylation of Unactivated Ethers under Photocatalyst- and Additive-Free Conditions. J Org Chem 2022; 87:11281-11291. [PMID: 35930606 DOI: 10.1021/acs.joc.2c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photocatalyst- and additive-free visible-light-induced α-C(sp3)-H phosphinylation of unactivated ethers involving a C-O bond cleavage with molecular oxygen as the sole oxidant at room temperature has been achieved. This method provides a sustainable access to α-hydroxyphosphine oxides in up to 88% yield with good functional group compatibility under mild and neutral conditions (34 examples). Moreover, the subsequent two-step conversion of the resulting dihydroxy diarylphosphine oxides afforded α-phosphinylated cyclic ethers in good overall yields (10 examples).
Collapse
Affiliation(s)
- Bo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianji Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yifan Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hao-Li Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Kondoh A, Terada M. Brønsted base-catalyzed 1,2-addition/[1,2]-phospha-Brook rearrangement sequence providing functionalized phosphonates. Org Biomol Chem 2022; 20:2863-2866. [PMID: 35302579 DOI: 10.1039/d2ob00256f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology for the introduction of functional groups into an organic molecule in which a keto or a formyl group is used as the connecting site was developed by utilizing the 1,2-addition/[1,2]-phospha-Brook rearrangement sequence under Brønsted base catalysis. The reaction of aromatic aldehydes and ketones with phosphinates having functional groups such as alkynyl, bromoalkyl, N-Boc amino, and boryl groups efficiently proceeded with the aid of phosphazene base P2-tBu as the catalyst, providing densely functionalized phosphonates in good yields.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
17
|
Kawajiri A, Udagawa T, Minoura M, Murai T. Stereoselective Transesterification of P-Chirogenic Hydroxybinaphthyl Phosphinates. Chemistry 2022; 11:e202100294. [PMID: 35261188 PMCID: PMC9630046 DOI: 10.1002/open.202100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Indexed: 01/31/2023]
Abstract
The substitution reaction of phosphinates with a binaphthyloxy group at the phosphorus atom with lithium alkoxides proceeded with good to high efficiencies to give P-chirogenic phosphinates with a high enantiomeric ratio. As alcohols, primary, secondary, and tertiary alcohols could be used, and the use of tert-butyl alcohol yielded the products with a higher enantiomeric ratio. A substrate with two different alkyl groups on the phosphorus atom could also participate in the substitution reaction to give the corresponding products in good yields with excellent selectivity. The molecular structures of one of the substrates and the corresponding products, determined by X-ray analyses, proved that the substitution reaction at the phosphorus atom proceeded with inversion of the absolute configuration. The usefulness of the reaction was demonstrated by using it to prepare a drug candidate for Duchenne muscular dystrophy. Finally, thionation of the resulting phosphinates was carried out to form P-chirogenic phosphinothioates.
Collapse
Affiliation(s)
- Akari Kawajiri
- Department of Chemistry and Biomolecular Science Faculty of EngineeringGifu University YanagidoGifu501-1193Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science Faculty of EngineeringGifu University YanagidoGifu501-1193Japan
| | - Mao Minoura
- Department of Chemistry College of ScienceRikkyo University Nishi-ikebukuro, Toshima-kuTokyo171-8501Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science Faculty of EngineeringGifu University YanagidoGifu501-1193Japan
| |
Collapse
|
18
|
Mejri A, Mansour L, Hamdi N. Synthesis and Antimicrobial Activity of Some of Isoindolin-1-One-3-Phosphonates under Mild and Solvent-Free Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2023591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. Mejri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - L. Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - N. Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
19
|
Tan Y, Han YP, Zhang Y, Zhang HY, Zhao J, Yang SD. Primary Amination of Ar2P(O)–H with (NH4)2CO3 as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Construction of Various P–N or P–O Bonds. J Org Chem 2022; 87:3254-3264. [DOI: 10.1021/acs.joc.1c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
A solvent-free method for the preparation of phosphinates from P(O)-OH compounds with alkyl chlorides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Dai Q, Liu L, Zhang J. Palladium/Xiao‐Phos‐Catalyzed Kinetic Resolution of
sec
‐Phosphine Oxides by
P
‐Benzylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Dai
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200241 P. R. China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
22
|
Dai Q, Liu L, Zhang J. Palladium/Xiao-Phos-Catalyzed Kinetic Resolution of sec-Phosphine Oxides by P-Benzylation. Angew Chem Int Ed Engl 2021; 60:27247-27252. [PMID: 34672416 DOI: 10.1002/anie.202111957] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Indexed: 02/06/2023]
Abstract
P-stereogenic tert- and sec-phosphines have wide applications in asymmetric catalysis, materials, and pharmaceutical chemistry, however, their practical synthesis still constitutes a significant challenge. Herein, a successful kinetic resolution of rac-secondary phosphine oxides via the enantioselective P-benzylation process catalyzed by the palladium/Xiao-Phos was designed. Both tert- and sec-phosphine oxides were delivered in good yield and excellent enantiopurity (selectivity factor up to 226.1). The appealing synthetic utilities are further demonstrated by the facile preparation of several valuable P-chiral compounds, precursors of bidentate ligands, as well as transition metal complexes.
Collapse
Affiliation(s)
- Qiang Dai
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
23
|
Wu L, Yuan X, Yang G, Xu C, Pan Z, Shi L, Wang C, Fan L. An eco-friendly procedure for the synthesis of new phosphates using KF/Al2O3 under solventless conditions and their antifungal properties. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chen Q, Teng Y, Xu F. Lanthanide Silylamide-Catalyzed Synthesis of Pyrano[2,3- b]indol-2-ones. Org Lett 2021; 23:4785-4790. [PMID: 34048269 DOI: 10.1021/acs.orglett.1c01506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A lanthanide silylamide-catalyzed tandem reaction of isatins, diethyl phosphite, and 2,3-diarylcyclopropenones has been developed. A series of pyrano[2,3-b]indol-2-ones were synthesized in high yields. The cooperation of the Lewis acidity of the lanthanide center and the Bronsted basicity of the N(SiMe3)2 anion may be the key factor affecting the catalytic activity of lanthanide amides.
Collapse
Affiliation(s)
- Qifa Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yue Teng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Fan Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Gasperini D, Neale SE, Mahon MF, Macgregor SA, Webster RL. Phosphirenium Ions as Masked Phosphenium Catalysts: Mechanistic Evaluation and Application in Synthesis. ACS Catal 2021; 11:5452-5462. [PMID: 34631226 PMCID: PMC8495902 DOI: 10.1021/acscatal.1c01133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Indexed: 11/29/2022]
Abstract
![]()
The
utilization of phosphirenium ions is presented; optimized and
broadened three-membered ring construction is described together with
the use of these ions as efficient pre-catalysts for metal-free carbonyl
reduction with silanes. Full characterization of the phosphirenium
ions is presented, and initial experimental and computational mechanistic
studies indicate that these act as a “masked phosphenium”
source that is accessed via ring opening. Catalysis proceeds via associative
transfer of {Ph2P+} to a carbonyl nucleophile,
H–SiR3 bond addition over the C=O group,
and associative displacement of the product by a further equivalent
of the carbonyl substrate, which completes the catalytic cycle. A
competing off-cycle process leading to vinyl phosphine formation is
detailed for the hydrosilylation of benzophenone for which an inverse
order in [silane] is observed. Experimentally, the formation of side
products, including off-cycle vinyl phosphine, is favored by electron-donating
substituents on the phosphirenium cation, while catalytic hydrosilylation
is promoted by electron-withdrawing substituents. These observations
are rationalized in parallel computational studies.
Collapse
Affiliation(s)
| | - Samuel E. Neale
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
26
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
27
|
Liu K, Chang X, He Y, Su Z, Huang Y, Huang C, Lei J, Zhu Q. Tunable synthesis of chalcophosphinic amides and tertiary phosphinates using tert-butyl N, N-dialkylperoxyamidate. Org Chem Front 2021. [DOI: 10.1039/d1qo00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tunable amidation and esterification of phosphine chalcoxide have been developed, in which tert-butyl N,N-dialkylperoxyamidate plays a dual role as a secondary amine and a tertiary alcohol precursor.
Collapse
Affiliation(s)
- Kun Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Xuexue Chang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhongfu Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Chusheng Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Jian Lei
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P.R. China
| | - Qiang Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
28
|
Xu F, Hui Y. Recent Advances in Metal-Catalyzed Heterocyclic C-P Bond Formation. Curr Org Synth 2020; 18:377-387. [PMID: 33371836 DOI: 10.2174/1570179417999201228214930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
The phosphorus-containing heterocycles are an important class of compounds in organic chemistry. Because of their potential application in many fields, especially, the synthetic pesticides, medicine and catalyst, the phosphorus-containing heterocycles have attracted continuous attention from organic synthesis scientists. The development of efficient and low-cost catalytic systems is of great interest for the construction of heterocycles C-P bond. Usually, the phosphorus-containing heterocycles is prepared via direct carbon-hydrogen (C-H) bond activation or pre-functionalized of heterocycles with phosphorus-hydrogen (P-H) bond of phosphorus compounds reaction by metal-catalyzed. This review summarizes recent progress in the heterocycles C-P bond formation reactions by metal-catalyzed, which mainly focus on the discussion of the reaction mechanism. It aims to provide efficient methods for the future synthesis and application in this field.
Collapse
Affiliation(s)
- Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang 550005, China
| | - Yu Hui
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology Nanchang Campus, Nanchang 330013, China
| |
Collapse
|