1
|
Velayutham TS, Khyasudeen MF, Zahid NI, Gopal SR, Ibrahim AR, Abou-Zied OK. Photoelectrical properties and excited-state dynamics of a nitrostilbene-functionalized organosiloxane liquid crystal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125549. [PMID: 39644819 DOI: 10.1016/j.saa.2024.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the photophysical and electrical properties of 4-heptamethyl-trisiloxanyl-n-undecyloxy-4'-nitrostilbene (SNS), a low molar mass organosiloxane liquid crystal containing a nitrostilbene chromophore. Real-time monitoring of the absorption and fluorescence spectra of the nitrostilbene moiety was conducted in dichloromethane solution and thin films (in both crystalline and Smectic C (SmC) phases). A charge transfer excited state is formed following vibrational cooling and solvent interaction within 0.4 to 1.6 ps, which then relaxes to the ground state in 1.6 ns. Five distinct lifetime components were identified in thin films, attributed to the heterogeneous local environment and aggregate formation. Notable differences in excited-state lifetimes were observed between the crystalline and SmC phases, with slower dynamics in the former due to the rigidity of the crystalline phase. Photoconductivity under UV irradiation was examined in SmC, Smectic A (SmA), and isotropic phases, showing a significant increase in current response, particularly in the SmC phase. Polarizing optical microscopy revealed morphological changes post-UV exposure, such as reduced SmC domain size and decreased birefringence. Dielectric measurements indicated distinct relaxation peaks in SmC and SmA phases, reflecting more disordered molecular arrangements. The study reveals that UV exposure significantly enhances SNS conductivity, particularly within the SmC phase. This enhancement is likely attributed to UV excitation promoting the formation of an intramolecular charge transfer state within the trans-stilbene moiety. These findings provide valuable insights into the potential applications of nitrostilbene-functionalized organosiloxane liquid crystals in optoelectronic devices, such as light switches and photodetectors.
Collapse
Affiliation(s)
- Thamil Selvi Velayutham
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - M Faisal Khyasudeen
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sanjeev R Gopal
- Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - A Ramadan Ibrahim
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Muscat, Sultanate of Oman
| | - Osama K Abou-Zied
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Muscat, Sultanate of Oman.
| |
Collapse
|
2
|
Das P, Grinalds NJ, Ghiviriga I, Abboud KA, Dobrzycki Ł, Xue J, Castellano RK. Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven Quantitative Photoswitching in Solution and the Solid State. J Am Chem Soc 2024; 146:11932-11943. [PMID: 38629510 DOI: 10.1021/jacs.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E → Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z → E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
Collapse
Affiliation(s)
- Parag Das
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Łukasz Dobrzycki
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Zhu HY, Li QS. Theoretical Understanding on the Facilitated Photoisomerization of a Carbonyl Supported Borane System. Chemphyschem 2023:e202300435. [PMID: 37646234 DOI: 10.1002/cphc.202300435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Boron compound BOMes2 containing an internal B-O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight-membered B, O-heterocycle (S. Wang, et al. Org. Lett. 2019, 21, 5285-5289). In this work, the detailed reaction mechanisms of such a unique carbonyl-supported tetracoordinate boron system in the first excited singlet (S1 ) state and the ground (S0 ) state were investigated by using the complete active space self-consistent field and its second-order perturbation (MS-CASPT2//CASSCF) method combined with time-dependent density functional theory (TD-DFT). Moreover, an imine-substituted tetracoordinated organic boron system (BNMes2 ) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2 . These results rationalize the experimental observations and can provide helpful insights into understanding the excited-state dynamics of heteroatom-doped tetracoordinate organoboron compounds, which facilitates the rational design of boron-based materials with superior photoresponsive performances.
Collapse
Affiliation(s)
- Hong-Yang Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, P. R. China
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, P. R. China
| |
Collapse
|
4
|
Sun Y, Ding H, Tang M, Wen J, Yue S, Peng Y, Zheng L, Shi Y, Cao Q. Multicolor Adjustable B-N Molecular Switches: Simple, Efficient, Portable, and Visual Identification of Butanol Isomers. Anal Chem 2023; 95:5594-5600. [PMID: 36942711 DOI: 10.1021/acs.analchem.2c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
As intelligent probes, dynamic and controllable molecular switches are useful tools for probing and intervening in life processes. However, the types and properties of molecular switches are still relatively single and often can only make two actions: "off" and "on". Therefore, the development of novel molecular switches with multiple colors and multiple instructions is very challenging. Herein, we propose a novel strategy based on the instability of the Lewis acid-base pair (boron (B) and nitrogen (N)), such as introducing the Schiff base (C═N) group into the aminoborane skeleton and preparing the novel molecular switches BN-HDZ and BN-HDZ-N. These two molecules were found to have good multicolor fluorescence switching capability for methanol. Surprisingly, the compound BN-HDZ-N shows unprecedented visual identification for the butanol isomers and could be made into a portable strip for simple and rapid visual identification of the four isomers of butanol, promising an alternative to conventional Lucas reagents. This provides a novel strategy for the design and fabrication of novel multicolor-tunable molecular switches with visual identification of isomers.
Collapse
Affiliation(s)
- Yitong Sun
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Huangting Ding
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Meng Tang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jingyi Wen
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Shiwen Yue
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ye Peng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Yonggang Shi
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
5
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
6
|
Jia Y, Li P, Liu K, Li C, Liu M, Di J, Wang N, Yin X, Zhang N, Chen P. Expanding new chemistry of aza-boracyclophanes with unique dipolar structures, AIE and redox-active open-shell characteristics. Chem Sci 2022; 13:11672-11679. [PMID: 36320401 PMCID: PMC9555748 DOI: 10.1039/d2sc03581b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 08/03/2023] Open
Abstract
π-Conjugated macrocycles involving electron-deficient boron species have received increasing attention due to their intriguing tunable optoelectronic properties. However, most of the reported B(sp2)-doped macrocycles are difficult to modify due to the synthetic challenge, which limits their further applications. Motivated by the research of non-strained hexameric bora- and aza-cyclophanes, we describe a new class of analogues MC-BN5 and MC-ABN5 that contain charge-reversed triarylborane (Ar3B) units and oligomeric triarylamines (Ar3N) in the cyclics. As predicted by DFT computations, the unique orientation of the donor-acceptor systems leads to an increased dipole moment compared with highly symmetric macrocycles (M1, M2 and M3), which was experimentally represented by a significant solvatochromic effect with large Stokes shifts up to 12 318 cm-1. Such a ring-structured design also allows the easy peripheral modification of aza-boracyclophanes with tetraphenylethenyl (TPE) groups, giving rise to a change in the luminescence mechanism from aggregation-caused quenching (ACQ) in MC-BN5 to aggregation-induced emission (AIE) in MC-ABN5. The open-shell characteristics have been chemically enabled and were characterized by UV-Vis-NIR spectroscopy and electron paramagnetic resonance (EPR) for MC-BN5. The present study not only showed new electronic properties, but also could expand the research of B/N doped macrocycles into the future scope of supramolecular chemistry, as demonstrated in the accessible functionalization of ring systems.
Collapse
Affiliation(s)
- Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Meiyan Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China Beijing 102488 China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
7
|
Shi Y, Li C, Ma H, Cao Z, Liu K, Yin X, Wang N, Chen P. Two-in-One Approach toward White-Light Emissions of Dimeric B/N Lewis Pairs by Tuning the Ortho-Substitution Effect. Org Lett 2022; 24:5497-5502. [PMID: 35856805 DOI: 10.1021/acs.orglett.2c02344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new family of dimeric B/N Lewis pairs with sterically tunable substitutions has been accomplished using the Two-in-One design strategy. Their structures are characteristic of doubly B/N-containing cores, and the electronic interactions between B and N centers can be modulated by the steric effects of ortho-substitutions from methyl groups. Interestingly, unique white-light emissions were achieved for 2M'2BNM and 1M2BNM, ascribed to the integration of two triarylborane species (Bsp2- and Bsp3-hybridization) into one single molecule.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Hongwei Ma
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhao Cao
- School of Material Science & Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| |
Collapse
|
8
|
Novel NBN-Embedded Polymers and Their Application as Fluorescent Probes in Fe 3+ and Cr 3+ Detection. Polymers (Basel) 2022; 14:polym14102025. [PMID: 35631907 PMCID: PMC9145644 DOI: 10.3390/polym14102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The isosteric replacement of C═C by B–N units in conjugated organic systems has recently attracted tremendous interest due to its desirable optical, electronic and sensory properties. Compared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers are poised to expand the diversity and functionality of olefin polymers, but this new class of materials remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide} (P3) were successfully synthesized. Their structure, photophysical properties and application in metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence. As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal fluorescence sensors.
Collapse
|
9
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
10
|
Li P, Jia Y, Zhang S, Di J, Zhang N, Chen P. Oligotriarylamine-Extended Organoboranes with Tunable Electron-Donating Strength by Changing the Number of Donor Units. Inorg Chem 2022; 61:3951-3958. [PMID: 35201745 DOI: 10.1021/acs.inorgchem.1c03578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylborane (Ar3B) and triarylamine (Ar3N) have been widely employed to construct electronically different donor-acceptor (D-A) systems. Herein, we describe a series of A-D-A-type luminescent organoboranes L-B2Nn (n = 1, 3, 5) that show an increased number of Ar3N units as electron donors and two terminal Ar3B as acceptors. When the Ar3N moieties were extended from one to five units, their electron-donating strength was gradually enhanced and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps could also be tuned, which was further reflected in the red-shifted emissions from blue (λem = 458 nm) to orange (λem = 595 nm) with a decrease in Egap(elect) from 3.19 to 2.61 eV. L-B2N5 showed a huge Stokes shift (∼14 057 cm-1) and a considerably bright emission with an enhanced solid-state quantum efficiency (ΦS = 98%) compared with the other members. L-B2N3 and L-B2N5 exhibited aggregation-induced emissions (AIEs), and an apparent solvatochromic shift was also observed in the emission spectra as the solvent was changed from hexane to tetrahydrofuran (THF) (430 → 595 nm). In addition, the donor-acceptor charge-transfer character in these organoboranes caused a thermally responsive emission over a broad range.
Collapse
Affiliation(s)
- Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Center, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
11
|
Chen JF, Yin X, Zhang K, Zhao Z, Zhang S, Zhang N, Wang N, Chen P. Pillar[5]arene-Based Dual Chiral Organoboranes with Allowed Host-Guest Chemistry and Circularly Polarized Luminescence. J Org Chem 2021; 86:12654-12663. [PMID: 34449233 DOI: 10.1021/acs.joc.1c01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We first describe two examples of highly luminescent organoboranes (NP5BN1 and NP5BN2) with dual chirality that were achieved by molecular functionalization of planar chiral pillar[5]arenes with naphthyls. Sufficiently strong steric effects are imposed by triarylamine (Ar3N) and triarylborane (Ar3B) moieties and further enhanced by the proximity of the chiral building blocks, leading to the isolation of multiple enantiomers via chiral high-performance liquid chromatography. The intramolecular charge transfer from N-donor to B-acceptor across both chiral subunits enabled the circularly polarized luminescence and thermally robust colorimetric responses in their emissions. Furthermore, their remarkable host-guest chemistry was allowed at no expense in the pursuit of advanced chiroptical properties using pillar[5]arene-based supramolecular scaffolds.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhenhui Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China.,College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
12
|
Lu RQ, Zhuo YZ, Bao YH, Yang LL, Qu H, Tang X, Wang XC, Li ZH, Cao XY. Cyclopentadienone Derivative Dimers as Tunable Photoswitches. Chemistry 2021; 27:7882-7886. [PMID: 33780575 DOI: 10.1002/chem.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/10/2022]
Abstract
A series of photoswitchable cyclopentadienone derivative dimers bearing bromo, thienyl, 4-(dimethylamino)phenyl, 3-pyridinyl, 4-nitrophenyl and cyano groups was designed and facilely synthesized. Photoswitching properties such as the photoconversions in the photostationary state (PSS), the thermal kinetics and thermal half-lives of photoisomers were systematically investigated. These photoswitches show high fatigue resistance and large photoconversions in the PSS. This work proves that the photoswitching properties of photoswitches based on cyclopentadienone dimers can be tuned by substitution groups and also pave the way to functionalize the cyclopentadienone derivative dimer-based photoswitch, which is important for its future applications.
Collapse
Affiliation(s)
- Ru-Qiang Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - You-Zhen Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yue-Hua Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xin-Chang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhi-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
13
|
Niknam E, Mahmoodi A, Panahi F, Heydari Dokoohaki M, Zolghadr AR, Khalafi-Nezhad A. Synthesis of some new distyrylbenzene derivatives using immobilized Pd on an NHC-functionalized MIL-101(Cr) catalyst: photophysical property evaluation, DFT and TD-DFT calculations. RSC Adv 2021; 11:12374-12380. [PMID: 35423731 PMCID: PMC8696979 DOI: 10.1039/d1ra00457c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
In this study the catalytic application of a heterogeneous Pd-catalyst system based on metal organic framework [Pd-NHC-MIL-101(Cr)] was investigated in the synthesis of distyrylbenzene derivatives using the Heck reaction. The Pd-NHC-MIL-101(Cr) catalyst showed high efficiency in the synthesis of these π-conjugated materials and products were obtained in high yields with low Pd-contamination based on ICP analysis. The photophysical behaviors for some of the synthesized distyrylbenzene derivatives were evaluated. The DFT and TD-DFT methods were employed to determine the optimized molecular geometry, band gap energy, and the electronic absorption and emission wavelengths of the new synthesized donor-π-acceptor (D-π-A) molecules in the gas phase and in various solvents using the chemical model B3LYP/6-31+G(d,p) level of theory.
Collapse
Affiliation(s)
- Esmaeil Niknam
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Ali Mahmoodi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | | | - Amin Reza Zolghadr
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| |
Collapse
|
14
|
Lei P, Zhang S, Zhang N, Yin X, Wang N, Chen P. Triptycene-Based Luminescent Materials in Homoconjugated Charge-Transfer Systems: Synthesis, Electronic Structures, AIE Activity, and Highly Tunable Emissions. ACS OMEGA 2020; 5:28606-28614. [PMID: 33195912 PMCID: PMC7658946 DOI: 10.1021/acsomega.0c03565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
We have developed a new family of luminescent materials featuring through-space charge transfer from electron donors to acceptors that are electronically separated by triptycene. Most of these molecules are highly fluorescent, and modulation of their emissions was achieved by tuning the electron-accepting strength in a range from the weak triptycene acceptor over triarylborane (BMes) to strongly accepting naphthalimide (Npa) moieties. Pz-Pz shows an aggregation-induced emission in aggregates and in the solid state coupled with a highly red-shifted broad emission (ca. 160 nm) of the excimer, indicating that phenothiazine (Pz) also plays a vital role in the emission responses as an electron donor. This work may help develop new approaches to photophysical mechanism based on the rigid, homoconjugated, and structurally unusual 3D triptycene scaffold.
Collapse
Affiliation(s)
- Puyi Lei
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Songhe Zhang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Niu Zhang
- Analysis
and Testing Centre, Beijing Institute of
Technology of China, Beijing 102488, People’s Republic
of China
| | - Xiaodong Yin
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Nan Wang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Pangkuan Chen
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| |
Collapse
|