1
|
Zhao Y, He W, Xu J, Wang J, Gan L, Hu L. Umpolung (4 + 1) Annulations of Bifunctional Hydroxylamines: A Modular Approach to Pyrrolidines. Org Lett 2025; 27:5146-5151. [PMID: 40350655 DOI: 10.1021/acs.orglett.5c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Herein we describe a modular and umpolung (4 + 1) cyclization strategy for synthesizing functionalized 2,2-disubstituted pyrrolidines decorated with versatile alkene, alkyne, and carbonyl groups under mild basic conditions. The new approach employs readily accessible N-haloalkyl hydroxylamines as distinctive carbon-nitrogen bielectrophiles, enabling a tandem C-C alkylation and umpolung C-N ring-closing reaction with diverse carbonyl nucleophiles. Furthermore, a catalytic asymmetric variant of this reaction has been also achieved with moderate enantioselectivity (72% ee) under the chiral phase-transfer catalytic conditions.
Collapse
Affiliation(s)
- Yukun Zhao
- Chongqing University Fuling Hospital, No.2 Gaosuntang Road, Fuling District, Chongqing 408000, China
| | - Wei He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingwen Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jinglong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lin Gan
- Chongqing University Fuling Hospital, No.2 Gaosuntang Road, Fuling District, Chongqing 408000, China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Lee HJ, Maruoka K. Asymmetric phase-transfer catalysis. Nat Rev Chem 2024; 8:851-869. [PMID: 39385042 DOI: 10.1038/s41570-024-00642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 10/11/2024]
Abstract
Over the past three decades, chiral phase-transfer catalysts (PTCs) have emerged as highly successful organocatalysts in a diverse range of asymmetric reactions. A substantial number of chiral PTCs have now already been discovered and utilized in dependable routes to enantioenriched products. These extend beyond the classical cationic PTCs with the emergence of anionic phase-transfer catalysis and hydrogen-bonding phase-transfer catalysis providing new asymmetric synthetic approaches. Nevertheless, the application level of chiral PTCs in both academic and industrial processes is below our expectation. This Review highlights the notable advances in chiral PTCs, including challenges, limitations and efforts to overcome them. Following this, the potential for sustainable chiral PTCs is described with a focus on using photocatalysed, flow and electrochemical synthesis.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Kunsan National University, Gunsan, Republic of Korea.
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Liu ZK, Liu Y, Hu XQ, Zou YQ. Decarboxylative Aminomethylation of Indole-3-carboxylic Acids via Strain Release-Driven Ring Opening of 1,2-Oxazetidines. Org Lett 2024; 26:8934-8938. [PMID: 39382327 DOI: 10.1021/acs.orglett.4c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A copper-catalyzed decarboxylative aminomethylation of indole-3-carboxylic acids with 1,2-oxazetidines has been developed, enabling the rapid synthesis of structurally diverse 3-aminomethylindoles in good to excellent yields. Remarkably, an unprecedented decarboxylative aminomethylation/cyclization cascade was further achieved by a combination of copper and iron salts to construct complex γ-carbolines with high efficiency. It is worth noting that one of the obtained products proved to be a good dual-emissive luminogen, exhibiting both aggregation-caused quenching and aggregation-induced emission.
Collapse
Affiliation(s)
- Zi-Kui Liu
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Yun Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - You-Quan Zou
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
4
|
Kőnig B, Sztanó G, Holczbauer T, Soós T. Syntheses of 2- and 3-Substituted Morpholine Congeners via Ring Opening of 2-Tosyl-1,2-Oxazetidine. J Org Chem 2023; 88:6182-6191. [PMID: 37125664 PMCID: PMC10167689 DOI: 10.1021/acs.joc.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Diastereoselective and diastereoconvergent syntheses of 2- and 3-substituted morpholine congeners are reported. Starting from tosyl-oxazatedine 1 and α-formyl carboxylates 2, base catalysis is utilized to yield morpholine hemiaminals. Their further synthetic elaborations allowed the concise constructions of conformationally rigid morpholines. The observed diastereoselectivities and the unusual diastereoconvergence in the photoredox radical processes seem to be the direct consequence of the avoidance of pseudo A1,3 strain between the C-3 substituent and the N-tosyl group and the anomeric effect of oxygen atoms.
Collapse
Affiliation(s)
- Bálint Kőnig
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Gábor Sztanó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Das S, Dutta A. Annulations involving 1-indanones to access fused- and spiro frameworks. RSC Adv 2022; 12:33365-33402. [PMID: 36425193 PMCID: PMC9679735 DOI: 10.1039/d2ra06635a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/15/2023] Open
Abstract
Indanones are prominent motifs found in number of natural products and pharmaceuticals. Particularly, 1-indanones occupy important niche in chemical landscape due to their easy accessibility and versatile reactivity. In the past few years, significant advancement has been achieved regarding cyclization of 1-indanone core. The present review focuses on recent (2016-2022) annulations involving 1-indanones for the construction of fused- and spirocyclic frameworks. In this context, new strategies for synthesis of various carbocyclic as well as heterocyclic skeletons are demonstrated. Mechanistic aspects of representative reactions are illustrated for better understanding of reaction pathways. A large number of transformations described in this review offer stereoselective formation of desired polycyclic compounds. Importantly, several reactions provide biologically relevant compounds and natural products, such as, plecarpenene/plecarpenone, swinhoeisterol A, cephanolides A-D, diptoindonesin G and atlanticone C.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women Naihati 24-Parganas (N) 743165 India
| | - Arpita Dutta
- Department of Chemistry, Rishi Bankim Chandra Evening College Naihati 24-Parganas (N) 743165 India
| |
Collapse
|
6
|
Ganie MA, Bhat MUS, Rizvi MA, Raheem S, Shah BA. Synthesis of 1,2-oxazetidines with a free -NH group via photoredox catalysis. Chem Commun (Camb) 2022; 58:8508-8511. [PMID: 35801422 DOI: 10.1039/d2cc02892a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A photoredox approach enabling one-step synthesis of oxazetidines with a free -NH group via the combined use of alkyne, thiophenol, and azide has been reported. The synthesized oxazetidine with the free -NH group was stable enough for various late-stage transformations such as methylation, acetylation, tosylation, and ring-opening reaction to afford synthetically useful α-aminoketones.
Collapse
Affiliation(s)
- Majid Ahmad Ganie
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
7
|
Xu JH, Liu ZK, Tang YL, Gao Y, Hu XQ. Merging strain-release and copper catalysis: the selective ring-opening cross-coupling of 1,2-oxazetidines with boronic acids. Chem Commun (Camb) 2022; 58:4180-4183. [PMID: 35266480 DOI: 10.1039/d2cc00461e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An unprecedented ring-opening cross-coupling of 1,2-oxazetidines with readily available arylboronic acids is achieved for the first time by copper catalysis. Unlike the known electrophilic oxygen reactivity in coupling with organometallic reagents, 1,2-oxazetidines were utilized as formaldimine precursors in this protocol. Remarkable features of this reaction include simple operation, inexpensive catalyst, broad scope and high regioselectivity, delivering a wide array of aminomethylation products. The practicality of this reaction was validated in the one-step downstream transformation of the obtained products into synthetically important molecules and late-stage modification of bioactive acids.
Collapse
Affiliation(s)
- Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yan-Liu Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
8
|
Dallemagne P, Zipfel P, Lalut J, Sopková-de Oliveira Santos J, Rochais C. Aminothiaindanone as an Accessible Scaffold for a Three-Point Chemical Diversity. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1523-1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractAminothiaindanone heterocycle appears to be a scaffold of interest in medicinal chemistry. To increase the chemical diversity in this series, the introduction of three-point chemical diversity on the cyclopenta[b]thiophen-4-one scaffold was explored. About thirty newly functionalized thiophene-containing bicycles were obtained using various chemical reactions, paving the way for novel possibilities in medicinal chemistry projects.
Collapse
|
9
|
Hu XQ, Liu ZK, Hou YX, Xu JH, Gao Y. Merging C-H Activation and Strain-Release in Ruthenium-Catalyzed Isoindolinone Synthesis. Org Lett 2021; 23:6332-6336. [PMID: 34346680 DOI: 10.1021/acs.orglett.1c02131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The merger of strain-release of 1,2-oxazetidines with carboxylic acid directed C-H activation in catalytic synthesis of isoindolinones is reported for the first time. This reaction opens a new and sustainable avenue to prepare a range of structurally diverse isoindolinone skeletons from readily available benzoic acids. The success of late-stage functionalization of some bioactive acids, and concise synthesis of biologically important skeletons demonstrated its great synthetic potential in drug discovery. Mechanistic studies indicated a plausible C-H activation/β-carbon elimination/intramolecular cyclization cascade pathway.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Wu B, Chen H, Gao M, Gong X, Hu L. Synthesis of 1,3-Aminoalcohols and Spirocyclic Azetidines via Tandem Hydroxymethylation and Aminomethylation Reaction of β-Keto Phosphonates with N-Nosyl- O-(2-bromoethyl)hydroxylamine. Org Lett 2021; 23:4152-4157. [PMID: 33999643 DOI: 10.1021/acs.orglett.1c01091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An unprecedented tandem α-hydroxymethylation and α-aminomethylation reaction of aromatic cyclic β-keto phosphonates with N-nosyl-O-(2-bromoethyl)hydroxylamine in the presence of DBU base has been developed, affording a range of 1,3-aminoalcohols in good yields. The resultant products could be flexibly transformed into the spirocyclic and bispirocyclic azetidines via one step of Mitsunobu reaction. Mechanistic study revealed that hydroxylamine in situ generated the formaldehyde and nosylamide, which in turn triggered the sequential Horner-Wadsworth-Emmons, Michael, and aldol reactions.
Collapse
Affiliation(s)
- Binyu Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hongbing Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Min Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
11
|
Wu B, Wen X, Chen H, Hu L. N-Nosyl- O-bromoethyl hydroxylamine acts as a multifunctional formaldehyde, formaldimine, and 1,2-oxazetidine surrogate for C–C and C–O bond-forming reactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00748c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxylamine could chemo- and stereoselectively produce α-hydroxymethyl and α-aminomethyl ketones and chiral α-alkoxyl and α-aminomethyl carboxylates in good yields.
Collapse
Affiliation(s)
- Binyu Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaolu Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hongbing Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
12
|
Zhong C, Yin Q, Zhao Y, Li Q, Hu L. Formal [5+1] annulation reactions of dielectrophilic peroxides: facile access to functionalized dihydropyrans. Chem Commun (Camb) 2020; 56:13189-13192. [DOI: 10.1039/d0cc05565d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peroxides, functioning as unique five-atom bielectrophilic synthons, enable the new [5+1] annulation reactions to access dihydropyrans in high yields.
Collapse
Affiliation(s)
- Chen Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Qi Yin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Yukun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Qinfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|