1
|
Ke M, Zheng J, Zong J, Tang K, Wang J, Zheng G, Zhang B, Cheng D, Ju Z, Chen F. Enantioselective [5 + 1] cycloaddition of sulfur ylides and vinylethylene carbonates via synergistic palladium/chiral phosphonic acid catalysis. Chem Sci 2025; 16:8108-8113. [PMID: 40206558 PMCID: PMC11977510 DOI: 10.1039/d5sc01050k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
An effective method for the synthesis of dihydropyrans through synergistic palladium and chiral phosphonic acid catalysis was reported. This protocol proceeded under mild reactions and provided dihydropyrans in up to 87% yield and up to 97% ee. Meanwhile, various derivations such as oxidation, Wittig-reaction, reductions, nucleophilic substitution, and Baeyer-Villiger were accomplished to furnish interesting compounds. To gain insight into the reaction mechanism, nonlinear relationship experiments and Hammett plot experiments were carried out. In addition, a range of products (3i, 4b, 4f, 4g, and 4j) accessible from this method exhibit various anti-inflammatory activities on NO and ROS inhibition.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Jinying Zheng
- College of Chemical Engineering, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Jiayi Zong
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Keshuang Tang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Jiahao Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Guohui Zheng
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Boxuan Zhang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road, Yangpu District Shanghai City China
| | - Zhiran Ju
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road, Yangpu District Shanghai City China
| |
Collapse
|
2
|
Cheng L, Zhao JL, Zhang XT, Jia QS, Dong N, Peng Y, Kleij AW, Liu XW. Chemo-, Regio- and Stereoselective Preparation of (Z)-2-Butene-1,4-Diol Monoesters via Pd-Catalyzed Decarboxylative Acyloxylation. Chemistry 2024; 30:e202401377. [PMID: 38738789 DOI: 10.1002/chem.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.
Collapse
Affiliation(s)
- Long Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Jia-Li Zhao
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Xiao-Tian Zhang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Qiao-Sen Jia
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Ni Dong
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 -, Barcelona, Spain
| | - Xiang-Wei Liu
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| |
Collapse
|
3
|
Savekar AT, Gaikwad RA, Waghmode SB. Metal-Free Regioselective Oxa-Michael Approach to Access Spirooxindole-Fused Tetrahydrofuran/Tetrahydropyran through [3 + 2]/ [4 + 2] Spirocyclization of Methyleneindolinones with Haloalcohols. J Org Chem 2024; 89:9389-9404. [PMID: 38913823 DOI: 10.1021/acs.joc.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An efficient one-pot metal-free, base-catalyzed method has been developed for the regioselective [3 + 2]/[4 + 2] annulation reactions of electrophilic methyleneindolinones with haloalcohols to furnish spirooxindole derivatives under mild reaction conditions. This reaction afforded the corresponding products with two contiguous stereocenters including a quaternary center in good to excellent yield (up to 95%) with moderate to good diastereoselectivities (up to 12.5:1 dr) with complete regioselectivity.
Collapse
Affiliation(s)
- Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Ramesh A Gaikwad
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
4
|
Li F, Chen X, Huang BQ, Xu HD, Zhu CF, Shen MH. Palladium-catalyzed ring-opening [5+2] annulation of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acids: rapid synthesis of 7-membered lactones. Chem Commun (Camb) 2024; 60:1774-1777. [PMID: 38252322 DOI: 10.1039/d3cc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel approach for the synthesis of unsaturated 7-membered lactones by Pd-catalyzed [5+2] dipolar cycloaddition of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acid derivatives has been developed. Various Meldrum's acid derivatives worked well in this reaction under mild reaction conditions. A variety of 7-membered lactones can be accessed in a facile manner in moderate to good yields by employing easily prepared Meldrum's acid derivatives.
Collapse
Affiliation(s)
- Fei Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Ben-Qing Huang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
5
|
Topp C, Metzler JM, Dressler F, Niedek D, Schuler SMM, Schreiner PR. Preparation of Spirocyclic Vinylic Carbonates from Allylic Alcohols. Org Lett 2024; 26:577-580. [PMID: 38190695 DOI: 10.1021/acs.orglett.3c03253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We present the synthesis of exo- and endo-spirovinylethylene carbonates, starting from various cyclic allylic alcohols. This one-pot cascade reaction to the spirocyclic scaffold was optimized using a design of experiments approach. The introduction of spirovinylethylene carbonates broadens the scope of using these in catalytic applications and provides an easy synthetic entry into spirocyclic scaffolds of various ring sizes.
Collapse
Affiliation(s)
- Christopher Topp
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jan M Metzler
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Friedemann Dressler
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dominik Niedek
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Sören M M Schuler
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
6
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
7
|
Han Z, Xue Y, Li X, Hu X, Dong XQ, Sun J, Huang H. Studies on the [4 + 2] cycloaddition and allylic substitution of indole-fused zwitterionic π-allylpalladium. Org Biomol Chem 2023; 21:8162-8169. [PMID: 37782136 DOI: 10.1039/d3ob01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The zwitterionic π-allylpalladium species, also known as dipoles, are important synthons widely used in various reactions including cycloaddition and allylic substitution. This study reported the development of a new indole-fused zwitterionic π-allylpalladium precursor compound and its application in [4 + 2] cycloaddition and allylic substitution reactions. As a result, the synthesis of pyrrolo[3,2,1-ij]quinazolin-3-one and 7-vinyl indole compounds was achieved with moderate to good yields. Notably, the allylic substitution reaction exhibited excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xinzhe Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
8
|
Zhao C, Khan S, Khan I, Shah BH, Zhang YJ. Pd‐Catalyzed Asymmetric Allylic Cycloaddition of Vinylethylene Carbonates with Nitroalkenes: A Route to Tetrahydrofurans bearing Vicinal Tetrasubstituted Stereocenters. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Can Zhao
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Sardaraz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Ijaz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Babar Hussain Shah
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Yong Jian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
9
|
Shi B, Liu JB, Wang ZT, Wang L, Lan Y, Lu LQ, Xiao WJ. Synthesis of Chiral Endocyclic Allenes by Palladium-Catalyzed Asymmetric Annulation Followed by Cope Rearrangement. Angew Chem Int Ed Engl 2022; 61:e202117215. [PMID: 35333435 DOI: 10.1002/anie.202117215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
Catalytic asymmetric synthesis of chiral endocyclic allenes remains a challenge in allene chemistry owing to unfavored tension and complex chirality. Here, we present a new relay strategy merging Pd-catalyzed asymmetric [3+2] annulation with enyne-Cope rearrangement, providing a facile route to chiral 9-membered endocyclic allenes with high efficiency and enantioselectivity. Moreover, theoretical calculations and experimental studies were performed to illustrate the critical, but unusual Cope rearrangement that allows for the complete central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Bin Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ze-Tian Wang
- School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Liang Wang
- School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
10
|
Li K, Yang S, Zheng B, Wang W, Wu Y, Li J, Guo H. A new type of δ-vinylvalerolactone for palladium-catalyzed cycloaddition: synthesis of nine-membered heterocycles. Chem Commun (Camb) 2022; 58:6646-6649. [PMID: 35593191 DOI: 10.1039/d2cc01134d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a new type of δ-vinylvalerolactone was designed and synthesized, and used as a new precursor in Pd-catalyzed [6+3] cycloaddition with azomethine imines, leading to nine-membered 1,2-dinitrogen-containing heterocycles in 77-98% yields with >20 : 1 d.r. These nine-membered ring-fused products were further transformed into unusual tetracyclic bridged-ring compounds without loss of the diastereoselectivities.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Mao B, Xu J, Shi W, Wang W, Wu Y, Xiao Y, Guo H. Pd-Catalyzed [4 + 2] cycloaddition of methylene cyclic carbamates with dihydropyrazolone-derived alkenes: synthesis of spiropyrazolones. Org Biomol Chem 2022; 20:4086-4090. [PMID: 35545885 DOI: 10.1039/d2ob00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a palladium-catalyzed [4 + 2] cycloaddition of 5-methylene-1,3-oxazinan-2-ones with 4-arylidene-2,4-dihydro-3H-pyrazol-3-ones has been developed to produce spiropyrazolones in high yields with excellent diastereoselectivities in nearly all cases. The cycloaddition reaction was scaled-up without significant loss of yield, and its synthetic utility has been demonstrated by further transformations of the products. The reaction type of N-Ts cyclic carbamates under palladium catalysis was extended to include [4 + 2] cycloaddition for the first time.
Collapse
Affiliation(s)
- Biming Mao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China. .,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
12
|
Xiong Q, Lu J, Shi L, Ran GY. Pd-Catalyzed Tandem [5 + 2] Cycloaddition/Ring Contraction of Phthalide-Derived Alkenes and Vinylethylene Carbonates for the Construction of Benzo-[5,5]-spiroketal Lactones. Org Lett 2022; 24:3363-3367. [DOI: 10.1021/acs.orglett.2c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Xiong
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ji Lu
- College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liu Shi
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Cai L, Zhang H, Wang K, Zhao H. Pd‐Catalyzed Decarboxylative Coupling Between Allyl Carbonates and Vinyl Benzoxazinanones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lu‐Yu Cai
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Heng Zhang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Kuo Wang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Hong‐Wu Zhao
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| |
Collapse
|
14
|
Ke M, Qiao B, Yu Y, Li X, Xiao X, Li SJ, Lan Y, Chen F. Palladium-Catalyzed Asymmetric [3 + 2] Annulation of Vinylethylene Carbonates with Alkenes Installed on Cyclic N-Sulfonyl Imines: Highly Enantio- and Diastereoselective Construction of Chiral Tetrahydrofuran Scaffolds Bearing Three Vicinal and Quaternary Stereocenters. J Org Chem 2022; 87:5166-5177. [PMID: 35377155 DOI: 10.1021/acs.joc.1c03157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multisubstituted tetrahydrofuran building block bearing three vicinal chiral carbon centers widely exists in a broad spectrum of bioactive natural products, and the development of efficient and convenient methods to establish this skeleton remains a challenging task. Herein, we have developed an efficient method for the construction of significant tetrahydrofuran scaffolds bearing three vicinal and α-quaternary chiral carbon stereocenters through Pd-catalyzed asymmetric [3 + 2] annulation of vinylethylene carbonates with alkenes installed on cyclic N-sulfonyl imines. A series of multisubstituted tetrahydrofuran derivatives are obtained in high efficiencies with excellent enantioselectivities and diastereoselectivities. Density functional theory (DFT) studies are accomplished to rationalize the stereocontrol of the annulation process and disclose that methanol could be applied to stabilize the reactive zwitterionic π-allylpalladium via the H-bond interaction.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bolin Qiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
15
|
Lu LQ, Shi B, Liu JB, Wang ZT, Wang L, Lan Y, Xiao WJ. Synthesis of Chiral Endocyclic Allenes by Palladium‐Catalyzed Asymmetric Annulation Followed by Cope Rearrangement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang-Qiu Lu
- Central China Normal University CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides and Chemical Biology 152 Luoyu Road 430079 Wuhan, Hubei CHINA
| | - Bin Shi
- Central China Normal University College of Chemistry CHINA
| | - Jia-Bin Liu
- Zhengzhou University College of Chemistry CHINA
| | - Ze-Tian Wang
- Jianghan University School of Chemical and Environmental Engineering CHINA
| | - Liang Wang
- Jianghan University School of Chemical and Environmental Engineering CHINA
| | - Yu Lan
- Zhengzhou University College of Chemistry CHINA
| | - Wen-Jing Xiao
- Central China Normal University College of Chemistry CHINA
| |
Collapse
|
16
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
17
|
Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Zhang J, Chen Y, Wang Q, Shen J, Liu Y, Deng W. Transition Metal-Catalyzed Asymmetric Cyclizations Involving Allyl or Propargyl Heteroatom-Dipole Precursors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Fan Y, Li QZ, Li JL, Zhang B, Dai Z, Xie K, Zeng R, Zou L, Zhang X. Palladium-catalysed stereoselective [3 + 2] annulation of vinylethylene carbonates and tryptanthrin-based ketones. Org Chem Front 2022. [DOI: 10.1039/d1qo01543e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of palladium-catalysed [3 + 2] annulation of VECs and ketones has been developed, allowing the efficient synthesis of indoloquinazolinones in generally excellent yields with good stereoselectivity.
Collapse
Affiliation(s)
- Yang Fan
- College of Pharmacy, Dali University, Dali 671003, PR China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Zhen Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ke Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
20
|
Morita T, Murakami H, Asawa Y, Nakamura H. Enantioselective Synthesis of Oxazaborolidines by Palladium‐Catalyzed N−H/B−H Double Activation of 1,2‐Azaborines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hiroki Murakami
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Yasunobu Asawa
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
21
|
Morita T, Murakami H, Asawa Y, Nakamura H. Enantioselective Synthesis of Oxazaborolidines by Palladium-Catalyzed N-H/B-H Double Activation of 1,2-Azaborines. Angew Chem Int Ed Engl 2021; 61:e202113558. [PMID: 34913232 DOI: 10.1002/anie.202113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/14/2023]
Abstract
A palladium-catalyzed N-H/B-H double activation of 1,2-dihydro-1,2-benzazaborines proceeded via cycloaddition with vinyl ethylene carbonate to produce polycyclic oxazaborolidines in 31-96 % yield. The key step in this process is the release of molecular hydrogen from a borate intermediate. Using a SPINOL-derived phosphoramidite as a chiral ligand, chiral oxazaborolidines were synthesized in good to high yields with excellent enantioselectivity (up to 95 % ee). The vinyl group of the resulting oxazaborolidine underwent metathesis, Heck reaction, and Wacker oxidation without affecting the oxazaborolidine framework.
Collapse
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
22
|
Li T, Zhu X, Jiang H, Wang Y, Zheng N, Peng T, Gao R, Shi L, Hao X, Song M. Pd‐catalyzed decarboxylative [3 + 2] cycloaddition: Assembly of highly functionalized spirooxindoles bearing two quaternary centers. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tiantian Li
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xinju Zhu
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Hui Jiang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Yanong Wang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen China
| | - Tian Peng
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Rui Gao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Linlin Shi
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xin‐Qi Hao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Mao‐Ping Song
- College of Chemistry ZhengZhou University Zhengzhou China
| |
Collapse
|
23
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
24
|
Ming S, Qurban S, Du Y, Su W. Asymmetric Synthesis of Multi-Substituted Tetrahydrofurans via Palladium/Rhodium Synergistic Catalyzed [3+2] Decarboxylative Cycloaddition of Vinylethylene Carbonates. Chemistry 2021; 27:12742-12746. [PMID: 34197006 DOI: 10.1002/chem.202102024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Unlike the comprehensive development of tandem multi-metallic catalysis, bimetallic synergistic catalysis has been challenging to achieve high stereoselectivity with the generation of multi-stereogenic centers. Herein, an efficient synergistic catalysis for the diastereo- and enantioselective synthesis of multi-substituted tetrahydrofuran derivatives has been developed. Under mild reaction conditions, a series of target molecules with three consecutive stereocenters were synthesized by a palladium(0)/rhodium(III) bimetal-catalyzed asymmetric decarboxylative [3+2]-cycloaddition of vinylethylene carbonates with α,β-unsaturated carbonyl compounds. The corresponding adducts were obtained with moderate to high yields (67 %∼98 %) and excellent stereoselectivities (>20 : 1 d.r., up to 99 % ee).
Collapse
Affiliation(s)
- Siliang Ming
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Saira Qurban
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
25
|
Pan T, Gao X, Yang S, Wang L, Hu Y, Liu M, Wang W, Wu Y, Zheng B, Guo H. Palladium-Catalyzed (3+3) Annulation of Allenylethylene Carbonates with Nitrile Oxides. Org Lett 2021; 23:5750-5754. [PMID: 34286988 DOI: 10.1021/acs.orglett.1c01921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we designed and synthesized a new type of cyclic carbonates, allenylethylene carbonates (AECs). With AECs as reactive precursors, we developed palladium-catalyzed (3+3) annulation of AECs with nitrile oxides. Various AECs worked well in this reaction under mild reaction conditions. A variety of 5,6-dihydro-1,4,2-dioxazine derivatives with allenyl quaternary stereocenters can be accessed in a facile manner in high yields (≤98%).
Collapse
Affiliation(s)
- Ting Pan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Xing Gao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yimin Hu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Min Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.,Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
26
|
Lv HP, Yang XP, Wang BL, Yang HD, Wang XW, Wang Z. Chiral Bidentate Phosphoramidite-Pd Catalyzed Asymmetric Decarboxylative Dipolar Cycloaddition for Multistereogenic Tetrahydrofurans with Cyclic N-Sulfonyl Ketimine Moieties. Org Lett 2021; 23:4715-4720. [PMID: 34096732 DOI: 10.1021/acs.orglett.1c01411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An asymmetric [3 + 2] cycloaddition of vinyl ethylenecarbonates (VECs) and (E)-3-arylvinyl substituted benzo[d] isothiazole 1,1-dioxides has been developed using the Pd complex of a bidentate phosphoramidite (Me-BIPAM) as the catalyst, providing a wide variety of chiral multistereogenic vinyltetrahydrofurans in good yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, 99% ee).
Collapse
Affiliation(s)
- Hao-Peng Lv
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Xiao-Peng Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Hao-Di Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Lin C, Xing Q, Xie H. A formal intermolecular [4 + 1] cycloaddition reaction of 3-chlorooxindole and o-quinone methides: a facile synthesis of spirocyclic oxindole scaffolds. RSC Adv 2021; 11:18576-18579. [PMID: 35480909 PMCID: PMC9033455 DOI: 10.1039/d1ra01086g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Herein, we developed an efficient and straightforward method for the rapid synthesis of spirocyclic oxindole scaffolds via the [4 + 1] cyclization reaction of 3-chlorooxindole with o-quinone methides (o-QMs), which were generated under mild conditions. The products could be obtained in excellent yields with numerous types of 3-chlorooxindole. This methodology features mild reaction conditions, high atom-economy and broad substrate scope. Herein, we developed an efficient and straightforward method for the rapid synthesis of spirocyclic oxindole scaffolds via the [4 + 1] cyclization reaction of 3-chlorooxindole with o-quinone methides (o-QMs), which were generated under mild conditions.![]()
Collapse
Affiliation(s)
- Chao Lin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| | - Qi Xing
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| | - Honglei Xie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
28
|
Ke M, Liu Z, Zhang K, Zuo S, Chen F. Synergistic Pd/Cu catalysis for stereoselective allylation of vinylethylene carbonates with glycine iminoesters: Enantioselective access to diverse trisubstituted allylic amino acid derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Wu HH, Fan XZ, Tang Z, Zhang H, Cai LY, Bi XF, Zhao HW. Palladium-Catalyzed Formal (5 + 6) Cycloaddition of Vinylethylene Carbonates with Isatoic Anhydrides for the Synthesis of Medium-Sized N, O-Containing Heterocycles. Org Lett 2021; 23:2802-2806. [PMID: 33739841 DOI: 10.1021/acs.orglett.1c00729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under the reaction conditions of Pd(PPh3)4 (2.5 mol %) and PPh3 (10 mol %) in EtOAc at 60 °C, the formal (5 + 6) cycloaddition of vinylethylene carbonates with isatoic anhydrides proceeded smoothly and furnished medium-sized N,O-containing heterocycles in reasonable chemical yields. The chemical structures of the title products were clearly identified by X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Xiao-Zu Fan
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Zhe Tang
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Heng Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Lu-Yu Cai
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Xiao-Fan Bi
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Hong-Wu Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| |
Collapse
|
30
|
Liu Z, Ke M, Zhang K, Zuo S, Jiang M, Chen F. Stereoselective Synthesis of (
Z
)‐Dihomoallylic Phosphonates with Quaternary Carbon Center by Palladium‐Catalyzed Bisallylation of Vinylethyene Carbonates with
β
‐Ketophosphonates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, College of Pharmaceutical Science Zhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
- Institute of Pharmaceutical Science and Technology, College of Pharmaceutical Science Zhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| |
Collapse
|
31
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Xia C, Wang DC, Qu GR, Guo HM. Palladium-catalyzed asymmetric allylic amination of a vinylethylene carbonate with N-heteroaromatics. Org Chem Front 2021. [DOI: 10.1039/d1qo00272d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly enantioselective allylic amination of a vinylethylene carbonate with N-heteroaromatics is enabled by asymmetric palladium catalysis for the synthesis of chiral acyclic nucleosides and isonucleosides.
Collapse
Affiliation(s)
- Chao Xia
- School of Environment
- Henan Normal University
- Xinxiang
- China
| | - Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Hai-Ming Guo
- School of Environment
- Henan Normal University
- Xinxiang
- China
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
| |
Collapse
|
33
|
Zhang J, Zhou P, Xiao D, Liu W. Research Progress of 1,3,5-Triazinanes in the Synthesis of Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|