1
|
Wang Q, Peng K, Yao X, Yuan Y, Chen Y, Deng GJ. Nickel-Catalyzed Reductive 1,4-Alkylacylation of 1,3-Enynes Enabling Synthesis of Allenyl Ketones. Org Lett 2025. [PMID: 40395166 DOI: 10.1021/acs.orglett.5c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
A nickel-catalyzed reductive 1,4-alkylacylation of 1,3-enynes has been established using nonactivated tertiary alkyl bromides and aromatic anhydrides as dual electrophiles. This protocol enables efficient assembly of tetrasubstituted allenyl ketones with high chemo- and regioselectivity. Mechanistic insights reveal the radical relay process involving the synergistic interactions of nickel and zinc. The allenyl ketone products serve as modular building blocks, particularly for constructing fully carbon-substituted furans via Au-catalyzed cycloisomerization with selective 1,2-aryl migration, enhancing the synthetic practicality.
Collapse
Affiliation(s)
- Quanyuan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Keyi Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Xiangyuan Yao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Yuezhou Yuan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| |
Collapse
|
2
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Yang LF, Zeng L, Liu YL, Hu M, Li JH. Photoreductive 1,4-Dicarbofunctionalization of 1,3-Enynes with Organoiodides and Cyanoarenes via Halogen-Atom Transfer. Org Lett 2024; 26:7661-7666. [PMID: 39197044 DOI: 10.1021/acs.orglett.4c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A photoreductive halogen-atom transfer (XAT) strategy for 1,4-dicarbofunctionalization of 1,3-enynes with organoiodides and cyanoarenes is disclosed, enabling access to functionalized allenes in a highly regio-, chemo-, and stereoselective manner. Upon the photoredox catalysis and the activation of Et3N XAT agents, the mild conditions and high functional group tolerance of this protocol enable the formation of two C-C bonds, including a C(sp3)-C(sp3) bond and a C(sp2)-C(sp2) bond, in a single reaction step, and provides a general avenue to polysubstituted allenes and late-stage modification of bioactive compounds.
Collapse
Affiliation(s)
- Liang-Feng Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Zeng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yi-Lin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Ming Hu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
4
|
Wang Y, Liu S, Huang Y. Photoredox/copper-catalyzed gem-difluoroalkylation-cyanation of 1,3-enynes. Org Biomol Chem 2024; 22:4895-4900. [PMID: 38826121 DOI: 10.1039/d4ob00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A photoredox/copper-catalyzed 1,4-difunctionalization of 1,3-enynes with readily available difluoroalkylating reagents and TMSCN was developed. This reaction proceeded at mild conditions, affording the corresponding difluoroalkylated allenes in good yields with high functional-group tolerance and excellent regioselectivity.
Collapse
Affiliation(s)
- Yachen Wang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| |
Collapse
|
5
|
Li M, Sun GQ, Liu YY, Li SX, Liu HC, Qiu YF, Chen DP, Wang XC, Liang YM, Quan ZJ. Nickel-Catalyzed Three-Component Tandem Radical Cyclization 1,5-Difunctionalization of 1,3-Enynes and Alkyl Bromide. J Org Chem 2023; 88:1403-1410. [PMID: 36656018 DOI: 10.1021/acs.joc.2c02271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nickel-catalyzed three-component tandem radical cyclization reaction of aryl bromides with 1,3-enynes and aryl boric acids to construct γ-lactam-substituted allene derivatives has been described. This protocol provides lactam alkyl radicals through the free radical cyclization process, which can be effectively used to participate in the subsequent multicomponent coupling reaction so that 1,3-enynes could directly convert into corresponding poly-substituted allene compounds. In addition, this efficient method enjoys a broad substrate scope and provides a series of 1,5-difunctionalized allenes in a one-pot reaction.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yu-Yu Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hai-Chao Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Pin Chen
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
6
|
Zhang J, Ma ZG, Tian Y, Li W, Gao WC, Chang HH. Divergent Synthesis of Fluorinated Alkenes, Allenes, and Enynes via Reaction of 2-Trifluoromethyl-1,3-enynes with Carbon Nucleophiles. J Org Chem 2022; 87:15086-15100. [PMID: 36314871 DOI: 10.1021/acs.joc.2c01580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herein, inorganic base K3PO4 promoted divergent synthesis of CF3-substituted allenes, cyclopentenes, alkynes, and fluorinated enynes via regioselective nucleophilic addition of carbon nucleophiles to 2-trifluoromethyl-1,3-enynes was developed. With the choice of different carbon nucleophiles, various fluorinated compounds could be obtained under K3PO4/DMF reaction system. When malononitriles were used as nucleophiles, CF3-substituted allenes, cyclopentenes, and alkynes could be obtained, respectively. By using 1,3-dicarbonyl compounds as nucleophiles, ring-monofluorinated 4H-pyrans could be prepared, and 1,1-difluoro-1,3-enynes could be furnished with the participation of diethyl malonate. Moreover, these five kinds of fluorinated allenes, alkenes, and enynes are valuable building blocks.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi-Guang Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu Tian
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.,Shanxi Tihondan Pharmaceutical Technology Co. Ltd., Jinzhong 030600, China
| |
Collapse
|
7
|
Li Y, Bao H. Radical transformations for allene synthesis. Chem Sci 2022; 13:8491-8506. [PMID: 35974759 PMCID: PMC9337727 DOI: 10.1039/d2sc02573f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Allenes are valuable organic molecules that feature unique physical and chemical properties. They are not only often found in natural products, but also act as versatile building blocks for the access of complex molecular targets, such as natural products, pharmaceuticals, and functional materials. Therefore, many remarkable and elegant methodologies have been established for the synthesis of allenes. Recently, more and more methods for radical synthesis of allenes have been developed, clearly emphasizing the associated great synthetic values. In this perspective, we will discuss recent important advances in the synthesis of allenes via radical intermediates by categorizing them into different types of substrates as well as distinct catalytic systems. The mechanistic studies and synthetic challenges will be highlighted.
Collapse
Affiliation(s)
- Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- University of Chinese Academy of Sciences Beijing 100049 P. R. of China
| |
Collapse
|
8
|
Zhang Q, Chiou MF, Ye C, Yuan X, Li Y, Bao H. Radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters enabled by a carbon shift from an all-carbon quaternary center. Chem Sci 2022; 13:6836-6841. [PMID: 35774175 PMCID: PMC9200052 DOI: 10.1039/d2sc00902a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, we report an intermolecular, radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters to achieve the goal of building molecular complexity via the one-pot multifunctionalization of alkenes. This reaction allows the expansion of the carbon ring by a carbon shift from an all-carbon quaternary center, and enables further C-C bond formation on the tertiary carbon intermediate with the aim of reconstructing a new all-carbon quaternary center. The good functional group compatibility ensures diverse synthetic transformations of this method. Experimental and theoretical studies reveal that the excellent diastereoselectivity should be attributed to the hydrogen bonding between the substrates and solvent.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaobin Yuan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Lingling Road 345 Shanghai 200032 P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
9
|
Sun Q, Zhang X, Duan X, Qin L, Yuan X, Wu M, Liu J, Zhu S, Qiu J, Guo K. Photoinduced Merging with Copper‐ or
Nickel‐Catalyzed
1,
4‐Cyanoalkylarylation
of 1,
3‐Enynes
to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Sun
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiu Duan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin Yuan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Meng‐Yu Wu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jie Liu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Shan‐Shan Zhu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiang‐Kai Qiu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| |
Collapse
|
10
|
Wang M, Wang Q, Ma M, Zhao B. Copper-Catalysed Synthesis of Trifluoromethyl Allenes via Fluoro-carboalkynylation of Alkenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01823j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allenes and trifluoromethyl motifs are considered as important building blocks in materials and pharmaceuticals. A copper-catalysed synthesis of trifluoromethyl allenes utilizing readily available feedstocks under mild and environmentlly friendly conditions...
Collapse
|
11
|
Zhao Y, Wang JL, Zhang Z, Li XS, Niu ZJ, Liu XY. Copper-Catalyzed Direct Allenylation of Inactive Cyclic Ethers. J Org Chem 2021; 86:18056-18066. [PMID: 34842425 DOI: 10.1021/acs.joc.1c02339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here a direct allenylation reaction of inactive cyclic ethers. The reaction proceeds through a copper-catalyzed 1,4-difunctionalization of 1,3-enynes, with cyano group installed at the allenes simultaneously. This methodology shows a broad functional group compatibility to 1,3-enynes. Diversified allene-modified cyclic ether derivatives were synthesized with high regioselectivity under mild conditions.
Collapse
Affiliation(s)
- Yichuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
12
|
Abstract
The radical relay coupling reaction recently emerged as a powerful synthetic strategy for producing tetrasubstituted allenes. However, bond-forming processes involving the allenyl radical intermediate are mostly limited to those promoted by transition metals. In this report, we describe that a ketyl radical generated from single-electron oxidation of the Breslow intermediate is an excellent coupling partner of allenyl radicals. An organocatalytic 1,4-alkylacylation of 1,3-enynes occurred smoothly in the presence of an aldehyde, a radical precursor, and an N-heterocyclic carbene catalyst. This transformation showed remarkable tolerance to both aromatic and aliphatic aldehydes, enyne substitution, and diversified radical precursors.
Collapse
Affiliation(s)
- Yuxing Cai
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
13
|
Zhang J, Luo J, Li X, Zhang Q, Wu Z, Lan Y, Wei D. Insights into Organoamine-Catalyzed Asymmetric Synthesis of Axially Chiral Allenoates Using Morita-Baylis-Hillman Carbonates and Trisubstituted Allenoates: Mechanism and Origin of Stereoselectivity. J Org Chem 2021; 86:15276-15283. [PMID: 34605241 DOI: 10.1021/acs.joc.1c01871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational study was performed to explore the possible mechanisms of β-isocinchonine-catalyzed asymmetric C(sp2)-H allylation of trisubstituted allenoates using Morita-Baylis-Hillman (MBH) carbonates for synthesis of axially chiral tetrasubstituted allenoates. The calculated results indicate that the most energetically favorable pathway includes (1) nucleophilic attack on MBH carbonate by β-isocinchonine, (2) BocO- dissociation, (3) stereoselective formation of the C-C bond, and (4) regeneration of the catalyst. By tracking the orbital overlap/interaction changes, the half shoulder-to-head orbital overlap mode can be smoothly switched to a head-to-head orbital overlap mode for the key C-C σ bond formation, which is also identified as the stereoselectivity-determining process. Further distortion/interaction, noncovalent interaction (NCI), and atom-in-molecule (AIM) analyses demonstrate that C-H···O and C-H···π interactions should be key for controlling the axial and central chirality. This work would be useful for rational design of organocatalytic allylic alkylation reactions for synthesis of axially chiral compounds in the future.
Collapse
Affiliation(s)
- Jiaming Zhang
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Jing Luo
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Xue Li
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Qiaoyu Zhang
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Zhoujie Wu
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Yu Lan
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Donghui Wei
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
14
|
Xu T, Wu S, Zhang QN, Wu Y, Hu M, Li JH. Dual Photoredox/Nickel-Catalyzed 1,4-Sulfonylarylation of 1,3-Enynes with Sulfinate Salts and Aryl Halides: Entry into Tetrasubstituted Allenes. Org Lett 2021; 23:8455-8459. [PMID: 34652925 DOI: 10.1021/acs.orglett.1c03179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A radical-mediated three-component 1,4-sulfonylarylation of 1,3-enynes with aryl iodides and sulfinate salts using cooperative photoredox/nickel catalysis is described. This protocol enables the synthesis of tetrasubstituted sulfonyl-containing allenes under redox-neutral conditions and provides a versatile 1,3-enyne 1,4-difunctionalization platform for the synthesis of a diverse range of tetrasubstituted allenes with high chemo- and regioselectivities, excellent functional group tolerance, and a broad substrate scope.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Quan-Na Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - You Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
15
|
Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. 1,4-Alkylcarbonylation of 1,3-Enynes to Access Tetra-Substituted Allenyl Ketones via an NHC-Catalyzed Radical Relay. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Chen
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Lin
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaojin Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianming Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lianjie Xing
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yage Guo
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
16
|
Ye C, Jiao Y, Chiou MF, Li Y, Bao H. Direct synthesis of pentasubstituted pyrroles and hexasubstituted pyrrolines from propargyl sulfonylamides and allenamides. Chem Sci 2021; 12:9162-9167. [PMID: 34276946 PMCID: PMC8261710 DOI: 10.1039/d1sc02090k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
Multisubstituted pyrroles are important fragments that appear in many bioactive small molecule scaffolds. Efficient synthesis of multisubstituted pyrroles with different substituents from easily accessible starting materials is challenging. Herein, we describe a metal-free method for the preparation of pentasubstituted pyrroles and hexasubstituted pyrrolines with different substituents and a free amino group by a base-promoted cascade addition-cyclization of propargylamides or allenamides with trimethylsilyl cyanide. This method would complement previous methods and support expansion of the toolbox for the synthesis of valuable, but previously inaccessible, highly substituted pyrroles and pyrrolines. Mechanistic studies to elucidate the reaction pathway have been conducted.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Yihang Jiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
17
|
Abstract
A metal-free two-component alkynylsulfonylation of vinylarenes with aryl alkynylsulfones to afford various β-sulfonyl alkynes in moderate to excellent yields under mild conditions is developed.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| |
Collapse
|
18
|
Ma Z, Li Y, Sun XQ, Yang K, Li ZY. Calixarene Promoted Transition-Metal-Catalyzed Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Li PH, Wei Y, Shi M. Cu(I)-Catalyzed addition-cycloisomerization difunctionalization reaction of 1,3-enyne-alkylidenecyclopropanes (ACPs). Org Biomol Chem 2020; 18:7127-7138. [PMID: 32966515 DOI: 10.1039/d0ob01692f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper(i)-catalyzed three-component addition-cycloisomerization difunctionalization reaction of 1,3-enyne-ACPs with Togni I reagent and TMSCN under mild reaction conditions has been developed, affording 3-trifluoroethylcyclopenta[b]naphthalene-4-carbonitrile derivatives. The reaction proceeded through a copper(i)-catalyzed 1,4-addition of conjugated 1,3-enynes via a radical relay process and aromatic cycloisomerization of allene-ACP intermediates.
Collapse
Affiliation(s)
- Peng-Hua Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
20
|
Pei C, Yang Z, Koenigs RM. Synthesis of Trifluoromethylated Tetrasubstituted Allenes via Palladium-Catalyzed Carbene Transfer Reaction. Org Lett 2020; 22:7300-7304. [PMID: 32866017 DOI: 10.1021/acs.orglett.0c02638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report on the palladium-catalyzed synthesis of trifluoromethylated, tetrasubstituted allenes from vinyl bromides and trifluoromethylated diazoalkanes in good to excellent yield. This reaction proceeds via oxidative addition of a Pd(0) complex with vinyl bromide. Subsequent base-promoted reductive elimination generates the allene. This methodology provides an efficient strategy even on gram scale to valuable trifluoromethylated, tetrasubstituted allenes under mild reaction conditions. The allene products can be used in acid catalyzed cyclization reactions to give trifluoromethylated indene products.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Zhen Yang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|