1
|
Wang S, Niu X, Zhou H, Cao J, Guo C, Chang J, Zhu B. Acid-Regulated Selective Synthesis of Benzofuran Derivatives via Single-Component BDA Retro-Aldol/Michael Addition Cascade and [4 + 2] Cycloaddition Reactions. J Org Chem 2025. [PMID: 40393964 DOI: 10.1021/acs.joc.5c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The acid-controlled single-component retro-aldol/Michael addition cascade reaction and [4 + 2] cycloaddition of benzofuran-derived azadienes (BDAs) are reported for the first time. Under the conditions of trifluoromethanesulfonic acid as the catalyst and with the addition of water, BDAs initiate the retro-aldol reaction, followed by a 1,4-Michael addition, yielding (arylmethylene)bis(dibenzofuran) products with excellent yields and broad substrate applicability. This represents the first application of BDAs in a retro-aldol reaction. In contrast, in the absence of water and with boron trifluoride etherate as the catalyst, BDAs undergo a [4 + 2] cycloaddition reaction, constructing the spiro[benzofuran-2,3'-benzofuro[3,2-b]pyridine] framework with high yields and diastereoselectivity. The method features mild conditions and high atom economy, and provides a new approach for constructing benzofuran scaffold derivatives.
Collapse
Affiliation(s)
- Shuhong Wang
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinran Niu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Haojia Zhou
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Jiatong Cao
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Chenyang Guo
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Savekar AT, Vitnor SM, Karande VB, Waghmode SB. Transition-metal-free regioselective synthesis of spiro-oxazolidines through [3 + 2] annulation reactions of azadienes with haloalcohols. RSC Adv 2025; 15:10634-10638. [PMID: 40190646 PMCID: PMC11970363 DOI: 10.1039/d5ra01423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
The transition-metal-free regioselective [3 + 2] annulation of azadienes with haloalcohols for the preparation of highly functionalized spiro-oxazolidines is experimentally simple and proceeds under mild conditions. The metal-free protocols have more significance than the metal-catalyzed ones when the toxicity associated with the metal catalyst is considered. This transformation features a broad substrate scope, good yields, and excellent regioselectivity. Moreover, large-scale synthesis and representative transformations of spiro-oxazolidines were carried out to provide additional evidence on the practicality of this approach.
Collapse
Affiliation(s)
- Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| | - Sonali M Vitnor
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| | - Vishal B Karande
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| |
Collapse
|
3
|
Wang CC, Wang QL, Li YH, Ren MR, Hou XH, Ma ZW, Liu XH, Chen YJ. Direct Synthesis for Benzofuro[3,2-d]pyrimidin-2-Amines via One-Pot Cascade [4+2] Annulation/Aromatization between Benzofuran-Derived Azadienes and Carbodiimide Anions. Chemistry 2024; 30:e202402886. [PMID: 39212526 DOI: 10.1002/chem.202402886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The chemoselective [4+2] annulation/aromatization reactions between benzofuran-derived azadienes and N-Ts cyanamides are developed, affording a convenient method for synthesizing benzofuro[3,2-d]pyrimidin-2-amines under mild conditions. Herein, N-Ts cyanamides participated in reactions selectively via carbodiimide anion intermediates and the corresponding cyanamide anion intermediates derived products were not observed. The proposed chemoselective stepwise reaction mechanism was well supported by DFT calculations.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Qing-Long Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Yi-Hui Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Meng-Ru Ren
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xue-Hui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Xue-Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|
4
|
Wang YJ, Yang CG, Wang S, Wu H, Zhao LM. Sequential Dearomatization/Rearrangement of Quinazoline-Derived Azomethine Imines for the Synthesis of Nitrogen-Rich Three-Dimensional Cage-Like Molecules. Org Lett 2024; 26:3557-3562. [PMID: 38652078 DOI: 10.1021/acs.orglett.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A sequential dearomatization/rearrangement reaction between quinazoline-derived azomethine imines and crotonate sulfonium salts has been developed to provide a series of three-dimensional cage-like molecules. The reaction involves two dearomatizations, two cyclizations, and two C-C bond and three C-N bond formations in one step. The new transformation has a broad substrate scope, does not require any added reagents, and proceeds under room temperature in a short time. A mechanistic rationale for the sequential dearomatization/rearrangement is also presented. Furthermore, the synthetic compounds are evaluated for their glucose control effect. Compounds 3aa and 3aj were found to be hyperglycemic, which might be lead compounds for treating hypoglycemia.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Chun-Guang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shuang Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Han Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
5
|
Wang YJ, Zhao LM. Synthesis of 10-Membered Azecines through Pd-Catalyzed Formal [6+4] Cycloaddition and Their Transannular Reaction to Polycyclic Compounds. Chemistry 2023; 29:e202302111. [PMID: 37776147 DOI: 10.1002/chem.202302111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Azecine fragments are frequently presented in natural products and bioactive compounds. However, minor efforts have been devoted to these 10-membered N-heterocycles, and their synthesis is still challenging. Reported herein is the first catalytic formal [6+4] cycloaddition for the synthesis of 10-membered azecines. Under palladium catalysis, the reaction of δ-vinylvalerolactones and benzofuran-derived azadienes proceeds smoothly to afford benzofuran-fused azecines with high diastereoselectivity in moderate to good yields. A unique transannular reaction of these 10-membered azecines for the construction of polycyclic compounds is also demonstrated.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
6
|
Huang Y, Tan M, Wang N, Zhang Y, Yao H, Xiao X, Huang N, Zou K. Highly Regio- and Diastereoselective Phosphine-Catalyzed [2 + 4] Annulation of Benzofuran-Derived Azadienes with Allyl Carbonates: Access to Spiro[benzofuran-cyclohexanes]. J Org Chem 2023; 88:13030-13041. [PMID: 37648964 DOI: 10.1021/acs.joc.3c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel highly regio- and diastereoselective phosphine-catalyzed [2 + 4] annulation of benzofuran-derived azadienes (BDAs) with acidic hydrogen-tethered allyl carbonates has been developed ingeniously. A range of functionalized spiro[benzofuran-cyclohexane] derivatives with two consecutive stereocenters were smoothly obtained in moderate to excellent yields under mild reaction conditions from readily available materials. Moreover, this method is a practical and scalable strategy that creates the core structural motif of the fungistatic drug, griseofulvin.
Collapse
Affiliation(s)
- Yifei Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yufei Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
7
|
Cai LY, Song XQ, Wang K, Zhang Y, Zhao HW. Pd-catalyzed decarboxylative 1,4-addition reactions of benzofuran-based azadienes with allyl phenyl carbonates. Org Biomol Chem 2023; 21:6556-6564. [PMID: 37525936 DOI: 10.1039/d3ob00968h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Under the catalysis of Pd(OAc)2/dppf/Na2CO3, the decarboxylative 1,4-addition reaction of benzofuran-based azadienes with allyl phenyl carbonates took place easily and delivered the desired products in reasonable chemical yields. The chemical structure of the target compounds was clearly identified by single crystal X-ray structural analysis.
Collapse
Affiliation(s)
- Lu-Yu Cai
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiu-Qing Song
- Large-scale Instruments and Equipments Sharing Platform, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kuo Wang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yue Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hong-Wu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
8
|
Lin ML, Zheng T, Liu H, Wang YX, Dong L. Three-component acyloxylation of diazo compounds with carboxylic acids and azadienes. Org Biomol Chem 2023; 21:925-929. [PMID: 36607136 DOI: 10.1039/d2ob02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite many studies on benzofuran-derived azadiene being reported, multi-component studies have scarcely been reported on this heterocyclic skeleton. The first cascade three-component acyloxylation of diazos with acids and azadienes has been reported under mild conditions. The reaction is applicable to various (A/A) diazo compounds, generating diverse complex benzofuran derivatives.
Collapse
Affiliation(s)
- Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying-Xu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
He ZY, Ning Y, Zhao YF, Diao HL, Zou P, Wang WB, Shu JS, Xu H. Synthesis of spirocyclopropanes via iodine-promoted bimolecular cyclization of 2-benzylidene 1,3-indandiones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2146513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zeng-Yang He
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Yong Ning
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Yu-Fei Zhao
- Marketing Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Hong-Lin Diao
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Peng Zou
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Wen-Bin Wang
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Jun-Sheng Shu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, P. R. China
| |
Collapse
|
10
|
Zhang X, Wang H, Li Z, Shu Y, Gan S, Zhang X, Shao H, Wang C. Chemodivergent Synthesis of Aza-Heterocycles with a Quarternary Carbon Center via [4 + 1] Annulation between Azoalkenes and α-Bromo Carbonyl Compounds. ACS OMEGA 2022; 7:40963-40972. [PMID: 36406503 PMCID: PMC9670695 DOI: 10.1021/acsomega.2c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
An efficient [4 + 1] annulation reaction between in situ generated azoalkene intermediates and α-bromocarbonyls has been established. A series of skeletally diverse aza-heterocycles with a functionalized quaternary center were obtained in up to 89% yield under mild conditions.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haibo Wang
- Zhejiang
Hongyuan Pharmaceutical Co., Ltd., Chem & APIs, Industrial Zone, Linhai, Taizhou 310001, Zhejiang, P.R. China
| | - Ziwei Li
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| | - Yan Shu
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xuefang Zhang
- Zunyi
Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 100045, P.R. China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408000, P.R. China
| |
Collapse
|
11
|
Shi W, Ren Y, Zhao H, Tang Y, Piao S, Mao B, Wang W, Wu Y, Wang B, Guo H. Phosphine-Catalyzed (4 + 2) Annulation of Allenoates with Benzofuran-Derived Azadienes and Subsequent Thio-Michael Addition. Org Lett 2022; 24:3747-3752. [PMID: 35549282 DOI: 10.1021/acs.orglett.2c01500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phosphine-catalyzed (4 + 2) annulation of tetrahydrobenzofuranone-derived allenoates and benzofuran-derived azadienes (BDAs) has been achieved to construct the decahydro-2H-naphtho[1,8-bc]furan derivatives, which were subsequently treated with 4-methylbenzenethiol and trimethylamine to produce thio-Michael addition products in high to excellent yields with good diastereoselectivities.
Collapse
Affiliation(s)
- Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Haoran Zhao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Shixiang Piao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Biming Mao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bo Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
12
|
Tu L, Gao L, Wang Q, Cao Z, Huang R, Zheng Y, Liu J. Substrate-Switched Chemodivergent Pyrazole and Pyrazoline Synthesis: [3 + 2] Cycloaddition/Ring-Opening Rearrangement Reaction of Azadienes with Nitrile Imines. J Org Chem 2022; 87:3389-3401. [PMID: 35157462 DOI: 10.1021/acs.joc.1c02998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By virtue of a fundamentally new reaction model of benzofuran-derived azadienes (BDAs), an unprecedented synthesis of biologically important pyrazoles has been achieved through a tandem [3 + 2] cycloaddition/ring-opening rearrangement reaction of BDAs with nitrile imines. The nature and type of substrates are found to act as a chemical switch to trigger two distinct reaction pathways. A minor modification to the substrates allows the access to spiro-pyrazolines.
Collapse
Affiliation(s)
- Liang Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Limei Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhixing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongsheng Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
13
|
Xu H, Jin Y, Zhang Z, Chen H, He ZY, Zou P, Huang FH. N-Iodosuccinimide-Promoted Selective Construction of Cyclopropyl and Dihydrofuranyl Spirooxindoles from Alkylidene Oxindoles and Annular β-Dicarbonyl Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1731-2703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAn efficient N-iodosuccinimide-promoted cyclization of readily available alkylidene oxindoles with annular β-dicarbonyl compounds has been demonstrated. With five-membered cyclic β-dicarbonyl compounds as the starting materials, a series of cyclopropyl oxindoles can be obtained in good to excellent yields, whereas the method affords dihydrofuranyl spirooxindoles almost quantitatively when six- or seven-membered cyclic β-dicarbonyl compounds are employed. This protocol provides a new alternative to the practical synthesis of structurally diverse spirooxindoles.
Collapse
Affiliation(s)
- Hui Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University
| | - Ying Jin
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University
| | - Ze Zhang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University
| | - Hong Chen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University
| | - Zeng-Yang He
- Technology Center, China Tobacco Anhui Industrial Co., Ltd
| | - Peng Zou
- Technology Center, China Tobacco Anhui Industrial Co., Ltd
| | - Fei-Hong Huang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University
| |
Collapse
|
14
|
Zhang W, Wei X, Wang Y, Huang Y, Nawaz S, Qu J, Wang B. Construction of pyrazole fused spiroketals by a (3 + 2) annulation reaction. Org Chem Front 2022. [DOI: 10.1039/d2qo01001a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A stereoselective (3 + 2) annulation process between 4-bromo pyrazolones and benzofuran-derived azadienes was developed. A series of novel pyrazole fused spiroketals were synthesized in the presence of triethylamine.
Collapse
Affiliation(s)
- Wande Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yue Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shah Nawaz
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
15
|
Li RL, Fang QY, Li MY, Wang XS, Zhao LM. A rearrangement of saccharin-derived cyclic ketimines with 3-chlorooxindoles leading to spiro-1,3-benzothiazine oxindoles. Chem Commun (Camb) 2021; 57:11322-11325. [PMID: 34636375 DOI: 10.1039/d1cc04179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An unusual rearrangement of saccharin-derived cyclic ketimines (SDCIs) and 3-chlorooxindoles has been developed to provide a series of spiro-1,3-benzothiazine oxindoles. The reaction features simple manipulations, short reaction times, mild reaction conditions and inexpensive reagents. It is the first example where SDCIs serve as a ring-opening reagent in organic synthesis.
Collapse
Affiliation(s)
- Rui-Li Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Qing-Yun Fang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Mei-Yuan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
16
|
Shen J, Yu A, Meng X. Stereoselective [4 + 3] annulation of azadienes and ethyl 4-bromo-3-oxobutanoate: construction of benzindeno-fused azepine derivatives. Org Biomol Chem 2021; 19:9026-9030. [PMID: 34612238 DOI: 10.1039/d1ob01749g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The benzindenoazepine ring system is an attractive scaffold for biologically active compounds. This work reported a NaH-promoted cycloaddition between azadienes and ethyl 4-bromo-3-oxobutanoate, which delivered a series of benzindenoazepines with good yields and stereoselectivities. Such benzindenoazepine derivatives were not easily obtained by using a traditional approach. The application of this cycloaddition strategy has been extended to azadienes bearing a benzofuran or benzothiophene moiety. The utility of this method was showcased by gram-scale experiments and synthetic transformations of the product.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
17
|
Li R, Yao L, Wang YB, Zhu JY, Zhang L, Fu JY, Zhang CB, Zhao L. Divergent Metal-Free [4 + 2] Cascade Reaction of 1-Indanylidenemalononitrile with 3-Benzylidenebenzofuran-2(3 H)-one: Access to Spiro-dihydrofluorene-benzofuranone and Axially Chiral Fluorenylamine-phenol Derivatives. Org Lett 2021; 23:5611-5615. [PMID: 34240601 DOI: 10.1021/acs.orglett.1c01510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade reaction of 1-indanylidenemalononitrile with 3-benzylidenebenzofuran-2(3H)-one divergently promoted by DABCO or chiral organocatalyst was developed under mild reaction conditions, and various spiro-dihydrofluorene-benzofuranones were produced in gratifying results, respectively. It is worth noting that both the spiro and axially chiral products can be obtained by tuning the reaction conditions. The mechanism of the transformation was also studied by quantum chemical calculations.
Collapse
Affiliation(s)
- Ran Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lei Yao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lixiong Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Chuan-Bao Zhang
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
18
|
Garrec J, Archambeau A, Scuiller A, Liu X, Cordier M. A Palladium-Catalyzed Oxa-(4+4)-Cycloaddition Strategy Towards Oxazocine Scaffolds. Synlett 2021. [DOI: 10.1055/s-0040-1706038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractA Pd-catalyzed oxa-(4+4)-cycloaddition between 1-azadienes and (2-hydroxymethyl)allyl carbonates is described. Aurone-derived azadienes furnished polycyclic 1,5-oxazocines in good yields. Interestingly, linear azadienes have also been involved and yielded monocyclic heterocycles with complete regioselectivity. DFT calculations were carried out to gain insight on this observation.
Collapse
Affiliation(s)
| | - Alexis Archambeau
- Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA Paris, CNRS, IP Paris
| | - Anaïs Scuiller
- Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA Paris, CNRS, IP Paris
| | - Xueyang Liu
- Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA Paris, CNRS, IP Paris
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire, UMR 9168, Ecole Polytechnique, CNRS, IP Paris
| |
Collapse
|
19
|
Feng Q, Wu A, Zhang X, Song L, Sun J. An unusual formal migrative cycloaddition of aurone-derived azadienes: synthesis of benzofuran-fused nitrogen heterocycles. Chem Sci 2021; 12:7953-7957. [PMID: 34168849 PMCID: PMC8188467 DOI: 10.1039/d1sc00941a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aurone-derived azadienes are well-known four-atom synthons for direct [4 + n] cycloadditions owing to their s-cis conformation as well as the thermodynamically favored aromatization nature of these processes. However, distinct from this common reactivity, herein we report an unusual formal migrative annulation with siloxy alkynes initiated by [2 + 2] cycloaddition. Unexpectedly, this process generates benzofuran-fused nitrogen heterocyclic products with formal substituent migration. This observation is rationalized by less common [2 + 2] cycloaddition followed by 4π and 6π electrocyclic events. DFT calculations provided support to the proposed mechanism.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Chemistry, Shenzhen Research Institute, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - An Wu
- Department of Chemistry, Shenzhen Research Institute, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jianwei Sun
- Department of Chemistry, Shenzhen Research Institute, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China .,The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
20
|
Fairuz Binte Sheikh Ismail SN, Yang B, Zhao Y. Access to 5,6-Spirocycles Bearing Three Contiguous Stereocenters via Pd-Catalyzed Stereoselective [4 + 2] Cycloaddition of Azadienes. Org Lett 2021; 23:2884-2889. [PMID: 33769066 DOI: 10.1021/acs.orglett.1c00505] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present herein a highly diastereo- and enantioselective Pd-catalyzed [4 + 2] cycloaddition of benzofuran-derived azadienes with vinyl benzoxazinanones, which represents a rare highly stereoselective cycloaddition of this class of fused azadienes as a two-atom synthon. The use of a phosphoramidite ligand bearing a chiral secondary amine with a simple biphenyl backbone proved to be the key to construct the novel spirocyclic tetrahydroquinoline scaffold containing three contiguous stereocenters as a single diastereomer in high enantioselectivity.
Collapse
Affiliation(s)
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
21
|
Li Q, Pan R, Wang M, Yao H, Lin A. Ligand-Controlled, Palladium-Catalyzed Asymmetric [4+4] and [2+4] Cycloadditions. Org Lett 2021; 23:2292-2297. [PMID: 33683909 DOI: 10.1021/acs.orglett.1c00420] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand-controlled, palladium-catalyzed asymmetric [4+4] and [2+4] cycloaddition reactions of benzofuran-derived azadienes have been developed. Taking advantage of chiral P,N-ligand (S,Rp)-PPFA, we obtained a variety of benzofuro[2,3-c][1,5] oxazocines in good yields with excellent enantioselectivities via [4+4] cycloaddition reactions. Employing chiral P,P-ligand (S)-Cl-MeO-BIPHEP, the chemo- and regioselectivities were switched to synthesize tetrahydropyran-fused spirocyclic compounds in good efficiency via [2+4] cycloaddition reactions.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Meihui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
22
|
Liu K, Yang J, Li X. Palladium-Catalyzed Diastereo- and Enantioselective [3 + 2] Cycloaddition of Vinylcyclopropanes with Azadienes: Efficient Access to Chiral Spirocycles. Org Lett 2021; 23:826-831. [DOI: 10.1021/acs.orglett.0c04062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kai Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jianfeng Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, NO. 388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Deng Q, Meng X. Recent Advances in the Cycloaddition Reactions of 2‐Benzylidene‐1‐benzofuran‐3‐ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chem Asian J 2020; 15:2838-2853. [DOI: 10.1002/asia.202000550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| |
Collapse
|
24
|
Fang QY, Zhao LM. A [4+3] annulation of benzofuran-derived azadienes and α-bromohydroxamates for the synthesis of benzofuran-fused 1,4-diazepinones. Chem Commun (Camb) 2020; 56:14079-14082. [DOI: 10.1039/d0cc06061e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cs2CO3-mediated formal [4+3] cycloaddition involving benzofuran-derived azadienes (BDAs) and α-bromohydroxamates to afford benzofuran-fused 1,4-diazepinones is established.
Collapse
Affiliation(s)
- Qing-Yun Fang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
| |
Collapse
|