1
|
Sun J, Zhang S, Wang R, Lv Z, Wu XX. Palladium-catalyzed sequential [3+2] cyclization/C-H activation of o-iodostyrenes with cyclopropenones as C2 synthons. Chem Commun (Camb) 2025. [PMID: 40336453 DOI: 10.1039/d5cc01189b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Herein, we report a novel palladium-catalyzed synthesis of diverse dihydroindeno[2,1-a]indenes by the reaction of o-iodostyrenes with cyclopropenones. This protocol involves a [3+2] cyclization/C-H activation sequence, forming a C(sp2)-C(sp2) and two C(sp2)-C(sp3) bonds. This procedure represents an innovative method for the assembly of tetracyclic dihydroindeno-indenes utilizing cyclopropenones as a new C2 synthon.
Collapse
Affiliation(s)
- Jie Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shaojie Zhang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Ruixue Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Zeng Lv
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| |
Collapse
|
2
|
Wang Y, Zhou H, Sun Y, Wang S, Lu R, Sun S, Han Y, Gao L, Zhang J. Palladium-Catalyzed Regioselective [3 + 2] Annulation with N-Allenamides at the Proximal C═C Bond: Synthesis of γ-Amino-α'-methylenecyclopentenones. Org Lett 2025; 27:4225-4231. [PMID: 40205917 DOI: 10.1021/acs.orglett.5c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A palladium-catalyzed [3 + 2] cycloaddition of cyclopropenones with N-allenamides has been developed. This methodology facilitates the synthesis of γ-amino-α'-methylenecyclopentenones in moderate to excellent yields with good regioselectivity and compatibility with various functional groups. The employment of N-allenamides as versatile 2C synthons enables simultaneous incorporation of both a nitrogen atom and a methylene group into cyclopentenones. Furthermore, this approach exhibits reverse regioselectivity when compared to general allenes. Density functional theory calculations successfully elucidated the origin of the observed regioselectivity.
Collapse
Affiliation(s)
- Yidong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Hang Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shenglong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruiqiang Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shiwan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Liuzhou Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Junliang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Department of Chemistry, Fudan University, Shanghai 200438, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
3
|
Qu QL, Ren YT, Cao JT, Sun W, Sun M. Rh-Catalyzed Formal [3 + 2] Cycloaddition Reactions with Cyclopropenones via Sequential C-H/C-C Bond Activation. Org Lett 2025; 27:1967-1972. [PMID: 39947681 DOI: 10.1021/acs.orglett.5c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The utilization of high-valent metal catalysts to promote cycloaddition reactions involving π bonds through C-C bond activation remains challenging. Despite extensive research, the cycloaddition of aldehydes with cyclopropenones catalyzed by metal complexes has not been documented. Herein, we disclose a novel Rh(III)-catalyzed cycloaddition reaction between cyclopropenones and aldehydes, enabling the efficient synthesis of highly functionalized furanones. A detailed mechanistic investigation was conducted, revealing the likely involvement of a tripodal Rh-carbene intermediate in the catalytic cycle, which facilitates the product release pathway. This reaction exhibits a broad substrate scope, good functional group compatibility, and high atom economy, thereby offering a versatile and general approach to the construction of furanones.
Collapse
Affiliation(s)
- Qing-Long Qu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yu-Tong Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jun-Tao Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
4
|
Zhang SL, Wu ZB, Zhao CX, Bai YX, Sun W, Sun M. Ag-Catalyzed Selective C-C Bond Activation of Cyclopropenones to Access α-Alkylidene Lactones. Org Lett 2024; 26:6120-6124. [PMID: 38989859 DOI: 10.1021/acs.orglett.4c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A novel Ag-catalyzed ring opening of unsymmetric cyclopropenones for the stereoselective synthesis of a diverse range of α-alkylidene lactones has been developed. In this protocol, two different C-C(O) bonds were distinguished, demonstrating selective C-C bond activation. This reaction features a wide substrate scope, good functional group compatibility, and high atom economy, providing a versatile and general approach to the construction of α-alkylidene lactones.
Collapse
Affiliation(s)
- Shu-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Zhao-Bing Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Chun-Xin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yu-Xin Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
5
|
Yao YX, Zhang J, Min X, Qin L, Wei Y, Gao Y, Hu XQ. Expedient access to polysubstituted acrylamides via strain-release-driven dual phosphine and palladium catalysis. Chem Commun (Camb) 2024; 60:6532-6535. [PMID: 38837153 DOI: 10.1039/d4cc01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polysubstituted acrylamides are ubiquitous in bioactive molecules and natural products. However, synthetic methods for the assembly of these important motifs remain underdeveloped. Herein, we report the expedient synthesis of structurally diverse and synthetically challenging polysubstituted acrylamides from readily available aromatic amines, cyclopropenones (CpOs), and aryl halides via the synergistic merging of nucleophilic phosphine-mediated amidation and palladium-catalyzed C-H arylation. The reaction is scalable, and some obtained acrylamides proved to be solid state luminogens with obvious aggregation-induced emission (AIE) properties, demonstrating the synthetic potential in drug discovery and material development.
Collapse
Affiliation(s)
- Yu-Xiang Yao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Xuehong Min
- Equine Science Research and Doping Control Center, Wuhan Business University, Wuhan 430056, China
| | - Lan Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
6
|
Zhang Z, Liang FF, Zhang SL, Sun W, Zhou AX, Sun M. Pd-Catalyzed Three-Component Coupling of Cyclopropenones via Sequential C-C Bond Activation and Allylation. Org Lett 2024; 26:4262-4267. [PMID: 38722897 DOI: 10.1021/acs.orglett.4c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel Pd-catalyzed three-component domino reaction for the stereoselective synthesis of highly functionalized allyl cinnamates has been developed. In this protocol, a sequential process of C-C bond activation and intermolecular allylic substitution was well-organized. The key for this transformation is the in situ generated hydrolysis product of cyclopropenone, which triggered a new reaction with vinylethylene carbonates. The reaction mechanism was investigated, demonstrating the high stereoselectivity and excellent atomic economy in this process.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fei-Fei Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Shu-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao, Jiangxi 334001, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
7
|
Zhang YB, Li BS, Xu GJ, Sun W, Sun M. Rh(III)-Catalyzed Double C-H Functionalization of Indoles with Cyclopropenones via Sequential C-H/C-C/C-H Bond Activation. Org Lett 2023. [PMID: 37200408 DOI: 10.1021/acs.orglett.3c01292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An unprecedented Rh(III)-catalyzed double C-H functionalization of indoles with cyclopropenones via sequential C-H/C-C/C-H bond activation has been developed. This procedure represents the first example for assembling of cyclopenta[b]indoles utilizing cyclopropenones as 3C synthons. This powerful approach shows excellent chemo- and regioselectivity, wide functional group tolerance, and good reaction yields.
Collapse
Affiliation(s)
- Yan-Bo Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Bin-Shi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Guo-Jie Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
8
|
Aravindan N, Jeganmohan M. One-Pot Synthesis of Benzo[ c]phenanthridine Alkaloids from 7-Azabenzonorbornadienes and Aryl Nitrones. Org Lett 2023. [PMID: 37200493 DOI: 10.1021/acs.orglett.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An efficient synthesis of benzo[c]phenanthridine alkaloids via a synergistic combination of C-C bond formation and a cycloaromatization reaction is described. Aryl nitrones react with 7-azabenzonorbornadienes in the presence of a Rh(III) catalyst, providing pharmaceutically useful benzo[c]phenanthridine derivatives in good to moderate yields. Using this methodology, highly useful alkaloids such as norfagaronine, norchelerythrine, decarine, norsanguinarine, and nornitidine were prepared in a single step.
Collapse
Affiliation(s)
- Narasingan Aravindan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
9
|
Sivaraj C, Gandhi T. Solvent-controlled amidation of acid chlorides at room temperature: new route to access aromatic primary amides and imides amenable for late-stage functionalization †. RSC Adv 2023; 13:9231-9236. [PMID: 36959886 PMCID: PMC10028618 DOI: 10.1039/d3ra00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature. A unique feature of this method lies in the sequential silyl amidation of aryol chlorides and nitrogen–silicon bond cleavage of the corresponding N,N-bis(trimethylsilyl)benzamide in a one-pot method in a very short reaction time. This effective strategy was extended to late-stage functionalization. Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature.![]()
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| |
Collapse
|
10
|
Lu LG, Chen JH, Huang XB, Liu MC, Zhou YB, Wu HY. Palladium-Catalyzed Ring-Opening Reaction of Cyclopropenones with Vinyl Epoxides. J Org Chem 2022; 87:16851-16859. [DOI: 10.1021/acs.joc.2c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Li-Guo Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Jun-Hua Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
11
|
Adrio J, Carretero JC, Corpas J, Ponce A, Maclean I. Catalyst-Controlled Chemodivergent [3+3] and [3+2] Formal Cycloadditions of Azomethine Ylides with Diphenylcyclopropenone. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1829-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractChemodivergent cycloadditions of azomethine ylides with diphenylcyclopropenone involving either Cu-catalyzed [3+3] or Ag-catalyzed [3+2] processes have been developed. These transformations provide a highly efficient method for the preparation of a variety of aromatic substituted dihydropyridinones and dihydropyrrolones with excellent regio and diasteroselectivities.
Collapse
Affiliation(s)
- Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
| | - Juan C. Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
| | - Javier Corpas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid
| | - Alberto Ponce
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid
| | - Ian Maclean
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid
| |
Collapse
|
12
|
Lehr M, Neumann T, Näther C, McConnell AJ. M-CPOnes: transition metal complexes with cyclopropenone-based ligands for light-triggered carbon monoxide release. Dalton Trans 2022; 51:6936-6943. [PMID: 35448899 DOI: 10.1039/d2dt00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of CO-releasing molecules, M-CPOnes, was prepared combining cyclopropenone-based ligands for CO release with the modular scaffold of transition metal complexes. In proof-of-concept studies, M-CPOnes based on ZnII, FeII and CoII are stable in the dark but undergo light-triggered CO release with the cyclopropenone substituents and metal ions enabling tuning of the photophysical properties. Furthermore, the choice of metal allows the use of different spectroscopic methods to monitor photodecarbonylation from fluorescence spectroscopy to UV/vis spectroscopy and paramagnetic NMR spectroscopy. The modularity of M-CPOnes from the metal ion to the cyclopropenone substitution and potential for further functionalisation of the ligand make M-CPOnes appealing for tailored functionality in applications.
Collapse
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Tjorge Neumann
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| |
Collapse
|
13
|
Cyclopropenes and methylenecyclopropanes in 1,3-dipolar cycloaddition reactions. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Hu H, Li BS, Xu JL, Sun W, Wang Y, Sun M. Rh(III)-Catalyzed spiroannulation of ketimines with cyclopropenones via sequential C-H/C-C bond activation. Chem Commun (Camb) 2022; 58:4743-4746. [PMID: 35323830 DOI: 10.1039/d2cc00421f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented Rh(III)-catalyzed [3+3]-spiroannulation of ketimines with cyclopropenones to access spiro[4,5]dienones has been developed. Sequential C-H/C-C bond activation and subsequent nucleophilic addition are disclosed in this process. This procedure represents the first example of the construction of spirolactams utilising cyclopropenones as 3C synthons. The remarkable advantages of this protocol are excellent chemo- and regio-selectivity, wide functional group tolerance, high reaction yields, and tolerance towards H2O.
Collapse
Affiliation(s)
- Hong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Bin-Shi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Jing-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Yong Wang
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China. .,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Wang X, Yu C, Atodiresei IL, Patureau FW. Phosphine-Catalyzed Dearomative [3 + 2] Cycloaddition of Benzoxazoles with a Cyclopropenone. Org Lett 2022; 24:1127-1131. [PMID: 35085442 PMCID: PMC8845044 DOI: 10.1021/acs.orglett.1c04045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/21/2022]
Abstract
The triphenylphosphine-catalyzed dearomative [3 + 2] cycloaddition of benzoxazoles with 1,2-diphenylcyclopropenone is herein described. The reaction scope, mechanism, and possible future applications of this rare organocatalyzed cycloaddition are herein discussed.
Collapse
Affiliation(s)
- Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Congjun Yu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iuliana L. Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
16
|
Miao WH, Gao WX, Huang XB, Liu MC, Zhou YB, Wu HY. Cascade Ring-Opening Dual Halogenation of Cyclopropenones with Saturated Oxygen Heterocycles. Org Lett 2021; 23:9425-9430. [PMID: 34854694 DOI: 10.1021/acs.orglett.1c03566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Represented is a CuX2- or I2-promoted ring-opening dual halogenation of cyclopropenones with saturated oxygen heterocycles, providing an efficient method for the synthesis of 3-haloacrylates. The ring-opening reaction enables the construction of two C-X (X = Cl, Br, or I) bonds and a C-O bond as well as the cleavage of two C-O bonds and a C-C bond in a single step. This protocol is highly atom economical, has an excellent substrate scope, and exhibits the ability for gram-scale reaction.
Collapse
Affiliation(s)
- Wei-Hang Miao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
17
|
Zhou HQ, Gu XW, Zhou XH, Li L, Ye F, Yin GW, Xu Z, Xu LW. Enantioselective palladium-catalyzed C(sp 2)-C(sp 2) σ bond activation of cyclopropenones by merging desymmetrization and (3 + 2) spiroannulation with cyclic 1,3-diketones. Chem Sci 2021; 12:13737-13743. [PMID: 34760158 PMCID: PMC8549799 DOI: 10.1039/d1sc04558j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Catalytic asymmetric variants for functional group transformations based on carbon–carbon bond activation still remain elusive. Herein we present an unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C(sp2)–C(sp2) σ bond activation and click desymmetrization to form synthetically versatile and value-added oxaspiro products. The operationally straightforward and enantioselective palladium-catalyzed atom-economic annulation process exploits a TADDOL-derived bulky P-ligand bearing a large cavity to control enantioselective spiro-annulation that converts cyclopropenones and cyclic 1,3-diketones into chiral oxaspiro cyclopentenone–lactone scaffolds with good diastereo- and enantio-selectivity. The click-like reaction is a successful methodology with a facile construction of two vicinal carbon quaternary stereocenters and can be used to deliver additional stereocenters during late-state functionalization for the synthesis of highly functionalized or more complex molecules. An unprecedented palladium-catalyzed (3 + 2) spiro-annulation merging C–C bond activation and desymmetrization was developed for the enantioselective construction of synthetically versatile and value-added oxaspiro products with up to 95% ee.![]()
Collapse
Affiliation(s)
- Han-Qi Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xing-Wei Gu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Guan-Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences P. R. China
| |
Collapse
|
18
|
Okamura H, Yasuno Y, Nakayama A, Kumadaki K, Kitsuwa K, Ozawa K, Tamura Y, Yamamoto Y, Shinada T. Selective oxidation of alcohol- d 1 to aldehyde- d 1 using MnO 2. RSC Adv 2021; 11:28530-28534. [PMID: 35478564 PMCID: PMC9037989 DOI: 10.1039/d1ra05405h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
The selective oxidation of alcohol-d1 to prepare aldehyde-d1 was newly developed by means of NaBD4 reduction/activated MnO2 oxidation. Various aldehyde-d1 derivatives including aromatic and unsaturated aldehyde-d1 can be prepared with a high deuterium incorporation ratio (up to 98% D). Halogens (chloride, bromide, and iodide), alkene, alkyne, ester, nitro, and cyano groups in the substrates are tolerated under the mild conditions. A facile method for deutrium incorporation into aldehydes by mild reduction of NaBD4 of aldehydes and MnO2 oxidation (98% D) is disclosed.![]()
Collapse
Affiliation(s)
- Hironori Okamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Atsushi Nakayama
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Katsushi Kumadaki
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Kohei Kitsuwa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Keita Ozawa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yusaku Tamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yuki Yamamoto
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| |
Collapse
|