1
|
Paul S, Verma PK, Kashyap A, Mondal R, Geetharani K. Approach to the Synthesis of gem-Thiolated Alkylboronates via Cobalt-Catalyzed Diboration of Aldehydes. Org Lett 2023; 25:2901-2906. [PMID: 37052890 DOI: 10.1021/acs.orglett.3c00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A new method has been developed for the sequential gem-thioborylation of readily available aldehydes via the cobalt-catalyzed diboration reaction. The N-heterocyclic carbene (NHC)-cobalt complex has been used as a catalyst for the diboration of aldehydes to generate α-oxyl boronic esters, which react with lithium thiolates to form a tetracoordinate boronate species, which undergoes 1,2-metalate rearrangement in the presence of trifluoroacetic anhydride. The stepwise functionalization of the boryl and thiol moiety of the products enriches the chemical toolbox of diverse organic synthesis.
Collapse
Affiliation(s)
- Sufal Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India
| | - Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India
| | - Anubhab Kashyap
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India
| | - Rahul Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India
| |
Collapse
|
2
|
Luo S, Jin S, Xu L, Liao Y, He R, Zhang J, Zhong L. Lignin-derived new hydrogen donors for photoinitiating systems in dental materials. J Dent 2023; 132:104477. [PMID: 36914066 DOI: 10.1016/j.jdent.2023.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVES The aim of this study is to develop amine free photo-initiating system (PIs) for the photopolymerization of dental methacrylate resins, using seven new hydrogen donors HDA-HDG derived from β-O-4 lignin model. METHODS Seven experimental CQ/HD PIs were formulated with Bis-GMA/TEGDMA (70 w%/30 w%). CQ/EDB system was chosen as the comparison group. FTIR-ATR was used to monitor the polymerization kinetics and double bond conversion. Bleaching property and color stability were evaluated using a spectrophotometer. Molecular orbitals calculations were used to demonstrate C-H bond dissociation energies of the novel HDs. Depth of cure of the HD based systems were compared to the EDB based one. Cytotoxicity was also studied by CCK8 assay using tissue of mouse fibroblasts (L929 cells). RESULTS Compared to CQ/EDB system, the new CQ/HD systems show comparable or better photopolymerization performances (1 mm-thick samples). Comparable or even better bleaching properties were also obtained with the new amine-free systems. Comparing to EDB, all HDs exhibited significantly lower C-H bond dissociation energies by molecular orbitals calculations. Groups with new HD showed higher depth of cure. OD and RGR values were similar to that of the CQ/EDB group, ensuring the feasibility of the new HDs in dental materials. CLINICAL SIGNIFICANCE The new CQ/HD PI systems could be potentially useful in dental materials, presenting improvements in restorations' esthetic and biocompatibility.
Collapse
Affiliation(s)
- Shuxin Luo
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China
| | - Shuqi Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixia Xu
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China
| | - Yilei Liao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui He
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China,; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China.
| | - Liangjun Zhong
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China,; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China.
| |
Collapse
|
3
|
Xu X, Yan L, Zhang ZK, Lu B, Guo Z, Chen M, Cao ZY. Na2S-Mediated One-Pot Selective Deoxygenation of α-Hydroxyl Carbonyl Compounds including Natural Products. Molecules 2022; 27:molecules27154675. [PMID: 35897854 PMCID: PMC9330554 DOI: 10.3390/molecules27154675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products.
Collapse
Affiliation(s)
- Xiaobo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
- Correspondence: (X.X.); (Z.-Y.C.)
| | - Leyu Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhi-Kai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
| | - Bingqing Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhuangwen Guo
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Mengyue Chen
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
- Correspondence: (X.X.); (Z.-Y.C.)
| |
Collapse
|
4
|
Wang W, He S, Zhong Y, Chen J, Cai C, Luo Y, Xia Y. Cobalt-Catalyzed Z to E Geometrical Isomerization of 1,3-Dienes. J Org Chem 2022; 87:4712-4723. [PMID: 35275485 DOI: 10.1021/acs.joc.1c03164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient cobalt-catalyzed geometrical isomerization of 1,3-dienes is described. In the combination of a CoCl2 precatalyst with an amido-diphosphine-oxazoline ligand, the geometrical isomerization of E/Z mixtures of 1,3-dienes proceed in a stereoconvergent manner, affording (E) isomers in high stereoselectivity. This facile transformation features a broad substrate scope with good functional group tolerance and could be scaled up to the gram scale smoothly with a catalyst loading of 1 mol %.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shuying He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuqing Zhong
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Cheng Cai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Fang J, Min Q, Qin H, Liu F. Intermolecular Acylation with Acylphosphonates as Alkyl Radical Receptor under Metal-Free Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Cobalt-catalyzed deoxygenative triborylation of allylic ethers to access 1,1,3-triborylalkanes. Nat Commun 2020; 11:5193. [PMID: 33060600 PMCID: PMC7562742 DOI: 10.1038/s41467-020-19039-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Polyborylated organic compounds have been emerging as versatile building blocks in chemical synthesis. Here we report a selective cobalt-catalyzed deoxygenative 1,1,3-triborylation reaction of allylic ethers with pinacolborane to prepare 1,1,3-triborylalkane compounds. With naturally abundant and/or synthetic cinnamic methyl ethers as starting materials, we have achieved the synthesis of a variety of 1,1,3-triborylalkanes (25 examples). The synthetic utility of these 1,1,3-triborylalkanes is demonstrated through site-selective allylation, protodeborylation, and consecutive carbon-carbon bond-forming reactions. Mechanistic studies including deuterium-labeling and control experiments suggest that this 1,1,3-triborylation reaction proceeds through initial cobalt-catalyzed deoxygenative borylation of allylic ethers to form allylic boronates followed by cobalt-catalyzed 1,1-diborylation of the resulting allylic boronates.
Collapse
|