1
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
2
|
Pramanik S, Mondal PP, Maity S. Organo-photoredox-Catalyzed Selective Mono- and Bis-C-H Alkylation of Electron-Rich (Hetero)Arenes. J Org Chem 2023; 88:15256-15269. [PMID: 37823605 DOI: 10.1021/acs.joc.3c01757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Herein, we disclose a simple strategy for the C-H alkylation of electron-rich (hetero)arenes with alkyl bromides employing visible-light-mediated organo-photocatalytic SET processes. The generality of this method has been evidenced by the inclusion of a variety of alkyl radicals (α-alkyl-carbonyl, benzyl, cyanomethyl) as well as diverse biologically active electron-rich arenes and (hetero)arenes under mild conditions. The extent of alkylation with alkyl bromides was found to be controlled by introducing Zn(OAc)2 as a bromide scavenger, ensuring the blocking of potential bromo-arene byproduct formation under photoredox conditions. In addition, a sequential C-H alkylation strategy for selective bis-alkylation has also been developed via chronological incorporation of different alkyl radical precursors in one pot quite efficiently.
Collapse
Affiliation(s)
- Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Partha Pratim Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
3
|
Suthar S, Mondal KC. Open shell versus closed shell bonding interaction in cyclopropane derivatives: EDA-NOCV analyses. J Comput Chem 2023; 44:2184-2211. [PMID: 37530758 DOI: 10.1002/jcc.27190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane ring is a very common motif in organic/bio-organic compounds. The chemical bonding of this strained ring is taught to all chemistry students. This three-membered cyclic, C3 ring is quite reactive which has attracted both, synthetic and theoretical chemists to rationalize/correlate its stability and bonding with its reactivity and physical properties over a century. There are a few bonding models (mainly the Bent-Bond model and Walsh model) of this C3 ring that are debated to date. Herein, we have carried out energy decomposition analysis coupled with natural orbital for chemical valence (EDA-NOCV) to study the two most reactive bonds of cyclopropane rings of 49 different organic compounds containing different functional groups to obtain a much deeper bonding insight toward a more general bonding model of this class of compounds. The EDA-NOCV analyses of fragment orbitals and susequent bond formation revealed that the nature of the CC bond of the cyclopropane (splitting two bonds at a time out of three CC bonds) ring is preferred to form two dative covalent CC bonds (between a singlet olefin-fragment and an excited singlet carbene-fragment with a vacant sp2 orbital and a filled p-orbital) for the majority (37/49) of compounds over two covalent electron sharing bonds in some (7/49) compounds (between an excited triplet olefin and triplet carbene), while a few (5/49) compounds show flexibility to adopt either the electron sharing or dative covalent bond as both are equally possible. The effects of functional groups on the nature of chemical bond in cyclopropane rings have been studied in detail. Our bonding analyses are in line with the QTAIM analyses which produce small negative values of the Laplacian, significantly positive values of bond ellipticity, and accumulation of electron densities around the ring critical point of C3 -rings. These corresponding QTAIM parameters of C3 -rings are quite different for CC single bonds of normal hydrocarbons as expected. The chemical bonding in the majority of cyclopropane rings can be very similar to those of metal-olefin systems.
Collapse
Affiliation(s)
- Sonam Suthar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
4
|
Yan M, Xiao L, Xiong J, Jin L, Stephan DW, Guo J. Borane catalyzed transesterification of tert-butyl esters using α-aryl α-diazoesters. Org Biomol Chem 2023; 21:8279-8283. [PMID: 37812087 DOI: 10.1039/d3ob01548c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The B(C6F5)3-catalyzed transesterification of a series of 3-alkenyl-oxindoles and other unsaturated tert-butyl esters with aryl-diazo esters is reported. This protocol is facile and generally high yielding proceeding under mild conditions and is remarkably chemoselective leaving the CC bonds intact.
Collapse
Affiliation(s)
- Maying Yan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jiangkun Xiong
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
5
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
6
|
Xiao L, Jin L, Zhao Y, Guo J, Stephan DW. B(C 6F 5) 3-catalyzed cyclopropanation of 3-alkenyl-oxindoles with diazomethanes. Chem Commun (Camb) 2023; 59:1833-1836. [PMID: 36722917 DOI: 10.1039/d2cc06744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spirocyclopropane-oxindoles are key motifs in biologically active compounds and are versatile synthetic intermediates. Herein, we report a metal-free, B(C6F5)3 catalyzed cyclopropanation of 3-alkenyl-oxindoles with diazomethanes. This provides 25 variants of spirocyclopropane-oxindole derivatives. These spirocyclopropane-oxindole products were obtained in good to excellent yields (up to 99%) and high diastereoselectivities (up to 20 : 1 d.r.) under mild reaction conditions and could be performed on a gram scale.
Collapse
Affiliation(s)
- Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Yunbo Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Zhang P, Li Z, Liu Y, Shi F, Wang L, Pu M, Lei M. Hydride Relay Exchange Mechanism for the Heterocyclic C-H Arylation of Benzofuran and Benzothiophene Catalyzed by Pd Complexes. J Org Chem 2022; 87:12997-13010. [PMID: 36166363 DOI: 10.1021/acs.joc.2c01545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism and regioselectivity of the heterocyclic C-H arylation of benzofuran and benzothiophene catalyzed by Pd(OAc)2 complexes were investigated using the density functional theory (DFT) method. The Pd(0)L2(PhI) complex (L = HOAc) is proposed to be the catalytic species. Compared to the traditional Heck-type mechanism, concerted metalation-deprotonation (CMD) mechanism, and electrophilic aromatic substitution (SEAr) mechanism for the C-H arylation, a new hydride relay exchange mechanism was proposed for the benzoheterocyclic C-H arylation catalyzed by Pd complexes, which consists of two redox processes between Pd(II) and Pd(0) species to complete the regioselective C-H activation. The calculated results indicate that the reaction along the hydride relay exchange mechanism is more favorable than those along other mechanisms, including the traditional Heck-type mechanism and the base-assisted anti-H elimination mechanism. This agrees well with the experimental results. Meanwhile, the origin for the regioselective C-H arylation was unveiled in which the α-C-H arylation products are major for the heterocyclic C-H arylation of benzofuran, but the β-C-H arylation products are major for that of benzothiophene. This study might provide a deep mechanistic understanding on the regioselective C-H activation and arylation of benzoheterocycle compounds catalyzed by transition-metal complexes.
Collapse
Affiliation(s)
- Peihuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangqiu Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Luocong Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Wang T, Chen X, Zhu D, Chung LW, Xu M. Rhodium(I) Carbene‐Promoted Enantioselective C−H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angew Chem Int Ed Engl 2022; 61:e202207008. [DOI: 10.1002/anie.202207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yi Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Xuan Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dong‐Xing Zhu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Ming‐Hua Xu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences and School of Pharmacy University of Chinese Academy of Sciences Shanghai 201203 China
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
9
|
Gorantla SMNVT, Mondal K. The Labile Nature of Air Stable Ni(II)/Ni(0)-phosphine/Olefin Catalysts/Intermediates: EDA-NOCV Analysis. Chem Asian J 2022; 17:e202200572. [PMID: 35927965 DOI: 10.1002/asia.202200572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Indexed: 11/06/2022]
Abstract
Metal ions-based inorganic-organic hybrid composites are often reported acting as good to excellent catalysts with various substrate scopes under milder reaction conditions. The active catalyst of a catalytic cycle is sometimes proposed to be a short-lived reactive intermediate species. A three coordinate (L-Me)Ni(II) intermediate species [L-Me = O 2 N donor dianionic ligand] can bind with short-lived carbene-ester ligands to produce four coordinate Ni(II) species which can act as carbene transfer intermediates under suitable reaction conditions for C-H functionalization or cyclopropanation reactions. The dissociation of phosphine (PPh 3 ) from the Ni(II) centre of (L-Me)Ni(II)(PPh 3 ) ( 1a ) and binding of short lived carbene esters (:CR 1 -CO 2 R 2 ; R 1 = H, Ph; R 2 = aliphatic group; 2-4 and other carbenes; 5-10 ) to Ni(II) rationalize the phenomenon in solution. Air stable Ni(0)-olefin complexes/intermediates ( 12-18 ) have recently been shown to mediate a variety of organic transformations. This analysis will further help organic/organometallic chemists to rationalize the design and synthesis of future catalysts for organic transformation. EDA-NOCV calculations have been performed to shed light on the stability and bonding of those species. Additionally, our analysis provides a proper reason why the analogous (L-Me)Pd-PPh 3 complex ( 1b ) does not dissociate in solution and hence, a similar catalytic product has not been isolated from identical reaction conditions. The stability and the labile nature of Ni(II/0) complexes has been investigated by state-of-the-art EDA-NOCV analyses.
Collapse
Affiliation(s)
| | - Kartik Mondal
- Indiana Institute Of Technology Madras, Chemistry, Department of Chemistry, IIT Madras, 600036, Chennai, INDIA
| |
Collapse
|
10
|
Xu MH, Wang TY, Chen XX, Zhu DX, Chung LW. Rhodium(I) Carbene‐Promoted Enantioselective C‐H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming-Hua Xu
- Southern University of Science and Technology Department of Chemistry No. 1088, Xueyuan Road 518055 Shenzhen CHINA
| | - Tian-Yi Wang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences State Key Laboratory of Drug Research CHINA
| | - Xiao-Xuan Chen
- Southern University of Science and Technology Chemistry CHINA
| | - Dong-Xing Zhu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences State Key Laboratory of Drug Research CHINA
| | - Lung Wa Chung
- Southern University of Science and Technology Chemistry CHINA
| |
Collapse
|
11
|
Li BS, Guo HX, Sun W, Sun M. Rh(III)-Catalyzed three-component C H functionalization reaction with vinylene carbonate: Late-stage C H esterification of indole derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Kurose T, Itoga M, Nanjo T, Takemoto Y, Tsukano C. Total Synthesis of Lyconesidine B: Approach to a Three-Dimensional Tetracyclic Skeleton of Amine-Type Fawcettimine Core and Studies of Asymmetric Synthesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Kurose
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Moeko Itoga
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Chihiro Tsukano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502
| |
Collapse
|
13
|
Francis M, Roy S. EDA-NOCV Analysis of Donor-Base-Stabilized Elusive Monomeric Aluminum Phosphides [(L)P-Al(L'); L, L' = cAAC Me, NHC Me, PMe 3]. ACS OMEGA 2022; 7:5730-5738. [PMID: 35224333 PMCID: PMC8867586 DOI: 10.1021/acsomega.1c05476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report on the stability and bonding analysis of donor-base-stabilized monomeric AlP species (1-6) of the general formula (L)P-Al(L'); [L = cAACMe, L' = cAACMe, NHCMe, PMe3, (N i Pr2)2 (1-4); L = L' = NHCMe, PMe3 (5 and 6); cAAC = cyclic alkyl(amino) carbene; NHC = N-heterocyclic carbene]. Energy decomposition analysis coupled with natural orbitals for chemical valence (EDA-NOCV) analysis indicates the synthetic viability of this class of species, stabilized in their singlet ground state, in the laboratory. The CL-P bond is found to be a partial double bond (WBI ∼ 1.45), while the CL/PL-Al bond is a single bond (WBI ∼ 0.42-0.69). These bonds are mostly covalent or dative σ/π bonds depending upon the ligands attached. The central P-Al bond is an electron-sharing covalent polar single bond (WBI ∼ 0.80; P-Al) for 1-4 and a dative σ bond for 5 and 6 (WBI ∼ 0.89-0.93; P-Al). The calculated intrinsic interaction energies of the central P-Al bonds are found to be in the range from -116 to -216 kcal/mol (1-3 and 5 and 6). This value is the highest for compound 3, possibly due to the push and pull effects from the ligands PMe3 and cAAC, respectively.
Collapse
Affiliation(s)
- Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research
(IISER) Tirupati, Tirupati 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research
(IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
14
|
Bang EJ, Ra J, Choi HY, Ko HM. Synthesis of Benzazepinoindole Derivatives via a One‐Pot Process of TiCl
4
‐Catalyzed Indole Alkylation/Pictet‐Spengler Cyclization. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eun Ji Bang
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Jongmin Ra
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Hoe Young Choi
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| | - Haye Min Ko
- Department of Chemistry Wonkwang University 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
- Wonkwang Institute of Materials Science and Technology Wonkwang University (Republic of Korea) 460 Iksandae-ro Iksan Jeonbuk 54538 Republic of Korea
| |
Collapse
|
15
|
Huang XL, Cheng YZ, You SL. Visible-light enabled synthesis of cyclopropane-fused indolines via dearomatization of indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of methylene-unsubstituted cyclopropane-fused indolines via photoredox catalyzed dearomative cyclopropanation of indole derivatives was developed. A broad range of indoles bearing a variety of functional groups were compatible...
Collapse
|
16
|
De SK. Applications of Nickel(II) Compounds in Organic Synthesis. Curr Org Synth 2021; 18:517-534. [PMID: 33655838 DOI: 10.2174/1570179418666210224124931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
This review article summarizes the applications of nickel(II) compounds in organic synthesis since 2016. In recent years, the field of nickel(II) catalysis is gaining considerable interest due to readily available, low-cost nickel(II)-compounds and several key properties of nickel. This review article is organized by the reaction type, although some reactions can be placed in multiple sections.
Collapse
Affiliation(s)
- Surya K De
- Supra Sciences, San Diego, California, United States
| |
Collapse
|
17
|
Nishimoto Y, Yasuda M, Wang F, Yi J. Homologation of Alkyl Acetates, Alkyl Ethers, Acetals, and Ketals by Formal Insertion of Diazo Compounds into a Carbon–Carbon Bond. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1523-1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractHomologation of alkyl acetates, alkyl ethers, acetals, and ketals was accomplished via formal insertion of diazo esters into carbon–carbon σ-bonds. The combined Lewis acid InI3 with Me3SiBr catalyzed the homologation of alkyl acetates and alkyl ethers. That of acetals and ketals was catalyzed solely by the use of InBr3. The key point of the homologation mechanism is that the indium-based Lewis acids have the appropriate amount of Lewis acidity to achieve both the abstraction and release of leaving groups. The abstraction of a leaving group by an indium-based Lewis acid and the electrophilic addition of carbocation or oxonium intermediates to diazo esters followed by the rearrangement of carbon substituents provide the corresponding cation intermediates. Finally, the leaving group that is captured by the Lewis acid bonds with cation intermediates to furnish the homologated products.
Collapse
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Fei Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Junyi Yi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| |
Collapse
|
18
|
Zhou J, Yin C, Zhong T, Zheng X, Yi X, Chen J, Yu C. A direct synthesis method towards spirocyclic indazole derivatives via Rh( iii)-catalyzed C–H activation and spiroannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00805f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodium(iii)-catalyzed [4 + 1] spiroannulation of N-aryl phthalazine-diones (pyridazine-diones) with diazo compounds to construct spirocyclic indazole derivatives with diverse structures is described.
Collapse
Affiliation(s)
- Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| |
Collapse
|
19
|
Kushvaha SK, Francis M, Kumar J, Nag E, Ravichandran P, Roy S, Chandra Mondal K. Synthesis, oligomerization and catalytic studies of a redox-active Ni 4-cubane: a detailed mechanistic investigation. RSC Adv 2021; 11:22849-22858. [PMID: 35480420 PMCID: PMC9034354 DOI: 10.1039/d1ra03071j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
A robust tetrameric nickel complex [Ni4((Oal−)2L-Me)4(s)4] (3) (s = solvent) with cubane-like Ni4O4 core topology was isolated as a light greenish-orange crystalline solid in excellent yield. The mechanism of formation of 3 involving the two chloride-containing precursors [Ni4((Oal−)2L-Me)4(s)4]·2MeOH (1) and [Ni4((O−)2L-Me)3((Oal−)(OH)L-Me)Cl] (2) was studied by ESI mass spectrometry and confirmed by the solid state isolation and single-crystal X-ray diffraction. The challenging ligand fields containing mono/di-anionic O2N donating atoms and/or chloride ions stabilized the pentacoordinate Ni(ii) ions in 1–2 upon controlling the experimental conditions. Complexes 1–3 have been characterized by NMR, UV-Vis and mass spectrometric analysis. Complex 3 was found to be redox active by cyclic voltammetry (CV) studies. Theoretical calculations were carried out to shed light on the effects of ligand fields on the stability of complexes 1–3. Complex 3 was found to be a potential catalyst for the diastereoselective cyclopropanation of heteroarenes with good to excellent yields. The ESI mass spectrometric analysis revealed the existence of solution dynamics and oligomerization of 3 in solution. Mechanistic investigation of the catalytic cycle revealed that complex 3 and its various oligomers bind to the diazoester employed, followed by dissociative insertion of the respective carbene moieties to the C2–C3 double bond of the involved aromatic heterocycle, leading to the diastereoselective cyclopropanation. A robust tetrameric nickel complex [Ni4((Oal−)2L-Me)4(s)4] (s = solvent) with cubane-like Ni4O4 core topology identified as the efficient catalyst for the diastereoselective cyclopropanation of aromatic heterocycles.![]()
Collapse
Affiliation(s)
| | - Maria Francis
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Jayasree Kumar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ekta Nag
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | | | - Sudipta Roy
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | | |
Collapse
|