1
|
Duprat F, Ploix JL, Dreyfus G. Can Graph Machines Accurately Estimate 13C NMR Chemical Shifts of Benzenic Compounds? Molecules 2024; 29:3137. [PMID: 38999091 PMCID: PMC11243075 DOI: 10.3390/molecules29133137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the organic laboratory, the 13C nuclear magnetic resonance (NMR) spectrum of a newly synthesized compound remains an essential step in elucidating its structure. For the chemist, the interpretation of such a spectrum, which is a set of chemical-shift values, is made easier if he/she has a tool capable of predicting with sufficient accuracy the carbon-shift values from the structure he/she intends to prepare. As there are few open-source methods for accurately estimating this property, we applied our graph-machine approach to build models capable of predicting the chemical shifts of carbons. For this study, we focused on benzene compounds, building an optimized model derived from training a database of 10,577 chemical shifts originating from 2026 structures that contain up to ten types of non-carbon atoms, namely H, O, N, S, P, Si, and halogens. It provides a training root-mean-squared relative error (RMSRE) of 0.5%, i.e., a root-mean-squared error (RMSE) of 0.6 ppm, and a mean absolute error (MAE) of 0.4 ppm for estimating the chemical shifts of the 10k carbons. The predictive capability of the graph-machine model is also compared with that of three commercial packages on a dataset of 171 original benzenic structures (1012 chemical shifts). The graph-machine model proves to be very efficient in predicting chemical shifts, with an RMSE of 0.9 ppm, and compares favorably with the RMSEs of 3.4, 1.8, and 1.9 ppm computed with the ChemDraw v. 23.1.1.3, ACD v. 11.01, and MestReNova v. 15.0.1-35756 packages respectively. Finally, a Docker-based tool is proposed to predict the carbon chemical shifts of benzenic compounds solely from their SMILES codes.
Collapse
Affiliation(s)
- François Duprat
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | - Jean-Luc Ploix
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | - Gérard Dreyfus
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
2
|
Liu D, Fan Y, Liu M, Ge Q, Gao R, Cong H. Cucurbit[7]uril-Catalyzed Beckmann Rearrangement of Arylketoximes. Org Lett 2024; 26:3896-3900. [PMID: 38666729 DOI: 10.1021/acs.orglett.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
With the existence of cucurbit[7]uril (Q[7]), a supramolecular catalysis strategy for the Beckmann rearrangement of aryl ketoximes to N-substituted amides was successfully established. The cavity of Q[7] was found to be essential for substrate encapsulation and the rearrangement reaction through comparative experiments and studies on host-guest interactions. This supramolecular strategy provides an efficient route for the rearrangement reaction incorporating a carbonation intermediate.
Collapse
Affiliation(s)
- Dechao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Ying Fan
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, People's Republic of China
- Engineering Research Center for Energy Conversion and Storage Technology of Guizhou, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, People's Republic of China
- Engineering Research Center for Energy Conversion and Storage Technology of Guizhou, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Ruihan Gao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, People's Republic of China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, People's Republic of China
- Engineering Research Center for Energy Conversion and Storage Technology of Guizhou, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
3
|
Zhou Y, Jones AM. A General Method to Access Underexplored Ylideneamino Sulfates as Interrupted Beckmann-Type Rearrangement Intermediates. Molecules 2024; 29:1667. [PMID: 38611947 PMCID: PMC11013155 DOI: 10.3390/molecules29071667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The Beckmann rearrangement of ketoximes to their corresponding amides, using a Brønsted acid-mediated fragmentation and migration sequence, has found wide-spread industrial application. We postulated that the development of a methodology to access ylideneamino sulfates using tributylsulfoammonium betaine (TBSAB) would afford isolable Beckmann-type intermediates and competent partners for subsequent rearrangement cascades. The ylideneamino sulfates generated, isolated as their tributylammonium salts, are sufficiently activated to undergo Beckmann rearrangement without additional reagent activation. The generation of sulfuric acid in situ from the ylideneamino sulfate giving rise to a routine Beckmann rearrangement and additional amide bond cleavage to the corresponding aniline was detrimental to reaction success. The screening of bases revealed inexpensive sodium bicarbonate to be an effective additive to prevent classic Brønsted acid-mediated fragmentation and achieve optimal conversions of up to 99%.
Collapse
Affiliation(s)
| | - Alan M. Jones
- School of Pharmacy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Zhang YH, Yang SS, Zhang Q, Zhang TT, Zhang TY, Zhou BH, Zhou L. Discovery of N-Phenylpropiolamide as a Novel Succinate Dehydrogenase Inhibitor Scaffold with Broad-Spectrum Antifungal Activity on Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3681-3693. [PMID: 36790098 DOI: 10.1021/acs.jafc.2c07712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Based on the structural features of both succinate dehydrogenase inhibitors (SDHIs) and targeted covalent inhibitors, a series of N-phenylpropiolamides containing a Michael acceptor moiety were designed to find new antifungal compounds. Nineteen compounds showed potent inhibition activity in vitro on nine species of plant pathogenic fungi. Compounds 9 and 13 showed higher activity on most of the fungi than the standard drug azoxystrobin. Compound 13 could completely inhibit Physalospora piricola infection on apples at 200 μg/mL concentration over 7 days and showed high safety to seed germination and seedling growth of plants at ≤100 μg/mL concentration. The action mechanism showed that 13 is an SDH inhibitor with a median inhibitory concentration, IC50, value of 0.55 μg/mL, comparable with that of the positive drug boscalid. Molecular docking studies revealed that 13 can bind well to the ubiquinone-binding region of SDH by hydrogen bonds and undergoes π-alkyl interaction and π-cation interaction. At the cellular level, 1 as the parent compound could destruct the mycelial structure of P. piricola and partly dissolve the cell wall and/or membrane. Structure-activity relationship analysis showed that the acetenyl group should be a structure determinant for the activity, and the substitution pattern of the phenyl ring can significantly impact the activity. Thus, N-phenylpropiolamide emerged as a novel and promising lead scaffold for the development of new SDHIs for plant protection.
Collapse
Affiliation(s)
- Yu-Hao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Shan-Shan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
- Taizhou Polytechnic College, 8 Tianxing Road, Taizhou, 225300 Jiangsu, China
| | - Qi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Tian-Tian Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Tian-Yi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| | - Bo-Hang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043 Shaanxi, China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100 Shaanxi, China
| |
Collapse
|
5
|
Lv XY, Abrams R, Martin R. Copper-Catalyzed C(sp 3 )-Amination of Ketone-Derived Dihydroquinazolinones by Aromatization-Driven C-C Bond Scission. Angew Chem Int Ed Engl 2023; 62:e202217386. [PMID: 36576703 DOI: 10.1002/anie.202217386] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Herein, we describe the development of a copper-catalyzed C(sp3 )-amination of proaromatic dihydroquinazolinones derived from ketones. The reaction is enabled by the intermediacy of open-shell species arising from homolytic C-C bond-cleavage driven by aromatization. The protocol is characterized by its operational simplicity and generality, including chemical diversification of advanced intermediates.
Collapse
Affiliation(s)
- Xin-Yang Lv
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Roman Abrams
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
6
|
Silica gel-promoted synthesis of amide by rearrangement of oxime under visible light. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Peng X, Liu Y, Shen Q, Chen D, Chen X, Fu Y, Wang J, Zhang X, Jiang H, Li J. BODIPY Photocatalyzed Beckmann Rearrangement and Hydrolysis of Oximes under Visible Light. J Org Chem 2022; 87:11958-11967. [PMID: 36044674 DOI: 10.1021/acs.joc.2c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel, efficient, and mild protocol for rearrangement of oximes to amides or hydrolyzing to ketone/aldehyde using a simple BODIPY dye as a photocatalyst and air as an oxidant via propagation reaction under visible-light irradiation is reported. The triplet excited state of BODIPY played a significant role in the catalytic process. It was found that the various substituted ketoximes, both with electron-withdrawing and electron-donating substituents, afforded the corresponding products with moderate to excellent yields, and the catalytic efficiency was up to 0.01 mol %.
Collapse
Affiliation(s)
- Xiaoyan Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yutong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Qing Shen
- Department of Pharmacy, Sichuan Academy of Medical Science Sichuan Provincial People's Hospital/Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Xueqin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yuning Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Jingxia Wang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Xiaobin Zhang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| |
Collapse
|
8
|
Dehydrative Beckmann rearrangement and the following cascade reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
10
|
SINGH JITENDER, Sharma A. Green and Sustainable Visible Light-Mediated Formation of Amide Bonds: An Emerging Niche in Organic Chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj02406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide bond is one of the most fascinating functional groups in nature due to its stability, conformational diversity, high bond polarity, and abundance in numerous natural products and drug candidates,...
Collapse
|
11
|
Liu Q, Huo CD, Du Z, Fu Y. Recent Progress in Organophotoredox Reaction. Org Biomol Chem 2022; 20:6721-6740. [DOI: 10.1039/d2ob00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past decade, visible light photoredox catalysis has been established as a gentle and powerful strategy for the activation of organic molecules. As an important part of it, organic...
Collapse
|
12
|
Bao L, Cheng JT, Wang ZX, Chen XY. Pyrylium salts acting as both energy transfer and electron transfer photocatalysts for E → Z isomerization of activated alkenes and cyclization of cinnamic or biaryl carboxylic acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01623g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we report that 2,4,6-triarylpyrylium salts could perform both energy transfer and electron transfer photocatalysis modes for E → Z isomerization of activated alkenes and cyclization of cinnamic or biaryl carboxylic acids.
Collapse
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Wan Y, Liu Q, Wu H, Zhang Z, Zhang G. 2,11-Dimethoxyldipyridopurinone as an efficient reducing visible-light photocatalyst for organic transformations. Org Chem Front 2022. [DOI: 10.1039/d1qo01914g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
2,11-Dimethoxyldipyridopurinone (DP4) was demonstrated as a potent reducing visible-light PC that can efficiently catalyze three prototypic photoreactions: the redox-neutral, net oxidative and reductive reactions via oxidative-quenching mechanisms.
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Shi A, Sun K, Chen X, Qu L, Zhao Y, Yu B. Perovskite as Recyclable Photocatalyst for Annulation Reaction of N-Sulfonyl Ketimines. Org Lett 2021; 24:299-303. [PMID: 34914402 DOI: 10.1021/acs.orglett.1c03960] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A sustainable and cost-effective manner for the photocatalytic annulation reaction of N-sulfonyl ketimines with N-arylglycines to synthesize imidazolidine-fused sulfamidates (31 examples) by employing CsPbBr3 as a heterogeneous photocatalyst has been developed. The catalyst CsPbBr3 can be simply recovered from the reaction mixture and reused at least five times without an obvious reduction in its photocatalytic reactivity, exhibiting a high catalyst economic feature.
Collapse
Affiliation(s)
- Anzai Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Lingbo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yufen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
15
|
Wan Y, Wu H, Ma N, Zhao J, Zhang Z, Gao W, Zhang G. De novo design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions. Chem Sci 2021; 12:15988-15997. [PMID: 35024122 PMCID: PMC8672711 DOI: 10.1039/d1sc05294b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Described here is the de novo design and synthesis of a series of 6H-dipyrido[1,2-e:2',1'-i]purin-6-ones (DPs) as a new class of visible-light photoredox catalysts (PCs). The synthesized DP1-5 showed their λ Abs(max) values in 433-477 nm, excited state redox potentials in 1.15-0.69 eV and -1.41 to -1.77 eV (vs. SCE), respectively. As a representative, DP4 enables the productive guanylation of various amines, including 1°, 2°, and 3°-alkyl primary amines, secondary amines, aryl and heteroaryl amines, amino-nitrile, amino acids and peptides as well as propynylamines and α-amino esters giving diversities in biologically important guanidines and cyclic guanidines. The photocatalytic efficacy of DP4 in the guanylation overmatched commonly used Ir and Ru polypyridyl complexes, and some organic PCs. Other salient merits of this method include broad substrate scope and functional group tolerance, gram-scale synthesis, and versatile late-stage derivatizations that led to a derivative 81 exhibiting 60-fold better anticancer activity against Ramos cells with the IC50 of 0.086 μM than that of clinical drug ibrutinib (5.1 μM).
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Jie Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Wenjing Gao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| |
Collapse
|
16
|
Yang L, Zhang CP. Revisiting the Balz-Schiemann Reaction of Aryldiazonium Tetrafluoroborate in Different Solvents under Catalyst- and Additive-Free Conditions. ACS OMEGA 2021; 6:21595-21603. [PMID: 34471763 PMCID: PMC8388107 DOI: 10.1021/acsomega.1c02825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
The thermal and photochemical Balz-Schiemann reaction in commonly used solvents was revisited under catalyst- and additive-free conditions. The study showed that using low- or non-polar solvents could improve the pyrolysis and photolysis of aryldiazonium tetrafluoroborates, enabling effective fluorination at a low temperature or under visible-light irradiation. PhCl and hexane were exemplified as cheap and reliable solvents for both reactions, providing good to excellent yields of aryl fluorides from the corresponding diazonium tetrafluoroborates. The combination of slight heating with visible-light irradiation was beneficial for the transformation of stable aryldiazonium tetrafluoroborates. Nevertheless, the electronic and steric nature of aryldiazonium tetrafluoroborates still had a pivotal effect on both fluorinations even in these solvents.
Collapse
Affiliation(s)
- Lian Yang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University
of Technology, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University
of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Nakamura K, Kobayashi E, Moriyama K, Togo H. Preparation of 6-substituted phenanthridines from o-biaryl ketoximes via the Beckmann rearrangement. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yadav D, Srivastava A, Ansari MA, Singh MS. Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. J Org Chem 2021; 86:5908-5921. [PMID: 33821649 DOI: 10.1021/acs.joc.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unique properties of ketoximes are used prominently for the synthesis of heterocycles. In contrast, their potential to absorb light and photoelectron transfer processes remains challenging. Widespread interest in controlling direct excitation of ketoxime tacticity unlocks unconventional reaction pathways, enabling photochemical intramolecular skeletal modification to constitute alkynyl sulfides that cannot be realized via traditional activation. Despite decades of advancements, the alkynyl sulfides, particularly those composed of polar functionalities and derived from renewable sources, remain unknown. These findings demonstrate the importance of decelerated ketoxime from β-oxodithioester for the identification of reaction conditions. The method uses mild reaction conditions to generate excited-state photoreductant for the functionalization of an array of alkynyl sulfides. Additionally, a fundamental understanding of elementary steps using electrochemical and spectroscopic techniques/experiments revealed a PCET pathway to this transformation, while the involved substrates and their properties with improved economical tools indicated the translational potential of this method.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhijeet Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
19
|
Zhang Z, He Z, Xie Y, He T, Fu Y, Yu Y, Huang F. Brønsted acid-catalyzed homogeneous O–H and S–H insertion reactions under metal- and ligand-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01401j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The economical and accessible CF3SO3H successfully catalyzed homogeneous O–H and S–H bond insertion reactions between hydroxyl compounds, thiols and diazo compounds under metal- and ligand-free conditions.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Biology and Biological Engineering
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Tiantong He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yaofeng Fu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
20
|
Du Y, Hou J, Lu Q, Hao W, Yu W, Chang J. Iodine-mediated 1,2-aryl migration of primary benzhydryl amines. NEW J CHEM 2021. [DOI: 10.1039/d1nj02932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This iodine-mediated 1,2-aryl migration reaction of primary amines is transition-metal-free and operationally simple, and can be conducted on a gram scale.
Collapse
Affiliation(s)
- Yangxu Du
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jiao Hou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Qing Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wei Hao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wenquan Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
21
|
Dev D, Kalita T, Mondal T, Mandal B. Ethyl 2‐Cyano‐2‐(2‐nitrobenzenesulfonyloxyimino) Acetate (
ortho
‐NosylOXY)‐Mediated Double Beckmann Rearrangement of Ketoximes under Microwave Irradiation: A Mechanistic Perception. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dharm Dev
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Tapasi Kalita
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Tanmay Mondal
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Bhubaneswar Mandal
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|