1
|
Zhou Y, Qiu XG, Li XR, Ye YS, Zhao J, Gao H, Xu G. Racemic Meroterpenoid with a 6/6/4/6/6/10/3 Skeleton via [2 + 2] and [4 + 2] Coupling of Sesquiterpenoid and Pyrone Units. Org Lett 2025. [PMID: 40388396 DOI: 10.1021/acs.orglett.5c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Hypbeaone A (1), a pair of racemic meroterpenoids featuring a 6/6/4/6/6/10/3 heptacyclic core, along with its biogenic precursor, hypermonone A (2), were isolated from Hypericum beanii. Compound 1 represented the first trimeric meroterpenoid that should be biosynthesized through intermolecular [2 + 2] and [4 + 2] cycloadditions of two pyrones and one sesquiterpenoid unit. Its structure was unequivocally determined by spectroscopic analysis and X-ray crystallography. Both compounds (±)-1 and 2 exhibited potential α-glucosidase inhibitory activities.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xian-Gui Qiu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Ren Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan-Song Ye
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianjun Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Gang Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
2
|
Huang JC, Jia XY, Lv YF, Xu HH, Han M, Yu QQ, Lu YT, Yang HX, Yang Y, Li JY, Hou AJ. Bicyclic polyprenylated acylphloroglucinol-related meroterpenoids as potent DRAK2 inhibitors from Hypericum patulum. PHYTOCHEMISTRY 2025; 232:114375. [PMID: 39733941 DOI: 10.1016/j.phytochem.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
As a both edible and medicinal plant, Hypericum patulum (Hypericaceae) is used as a natural herbal tea, scented tea, and folk medicine. In this study, eight undescribed bicyclic polyprenylated acylphloroglucinol-related meroterpenoids named hyperpatins A-H, along with eight known ones, were isolated from this plant. Their structures were elucidated on the basis of spectroscopic techniques, chemical method, X-ray crystallographic experiments, and electronic circular dichroism analyses. Hyperpatins A-H possess a characteristic pyran ring system diversely fused with the bicyclo[3.3.1]nonane-2,4,9-trione core, and hyperpatins C and D incorporate a unique α,β-unsaturated aldehyde moiety. Some of the isolates exhibited potent inhibitory effects on death-associated protein kinase-related apoptosis-inducing kinase 2 with IC50 values ranging from 2.60 ± 0.29 to 17.93 ± 3.08 μM. This is the first report of DRAK2 inhibitory activity for acylphloroglucinol-related meroterpenoids. The most active molecule hyperpatins C showed binding affinity with DRAK2 by hydrogen-bond and hydrophobic interactions in molecular docking and promoted the glucose-stimulated insulin secretion ability of primary islets.
Collapse
Affiliation(s)
- Jin-Chang Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yu Jia
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi-Fan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Hong Xu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming Han
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qiang-Qiang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Ting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong-Xun Yang
- Sinopharm Chemical Reagent Co., Ltd. Shanghai, 200002, China
| | - Yang Yang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Ai-Jun Hou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Jiang L, Ma X, Wang Y, Xue J, He Z, Nie Y, Liu T, Wang YL, Li Y. Four new compounds from fruits of Hypericum patulum Thunb. Nat Prod Res 2024; 38:1531-1536. [PMID: 36484645 DOI: 10.1080/14786419.2022.2155822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
A new naphthoquinone, patulumnaphthoquinone A (1) and three new glycosides, patulumside B (2), patulumside C (3) and patulumside D (4) were isolated from the 30% ethanol extract of the fresh ripe fruits of Hypericum patulum Thunb. using column chromatography techniques. The structures of these compounds including absolute configurations were elucidated on the basis of HRESIMS, NMR spectroscopic analyses, calculated electronic circular dichroism spectra and comparison with the literatures.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guizhou, People's Republic of China
| | - Xue Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guizhou, People's Republic of China
| | - Yang Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guizhou, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guizhou, People's Republic of China
| | - Jingyi Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guizhou, People's Republic of China
| | - Zhilong He
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guizhou, People's Republic of China
| | - Yushan Nie
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guizhou, People's Republic of China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guizhou, People's Republic of China
| | - Yong-Lin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, People's Republic of China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guizhou, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guizhou, People's Republic of China
| |
Collapse
|
4
|
Bitchagno GTM, Nchiozem-Ngnitedem VA, Melchert D, Fobofou SA. Demystifying racemic natural products in the homochiral world. Nat Rev Chem 2022; 6:806-822. [PMID: 36259059 PMCID: PMC9562063 DOI: 10.1038/s41570-022-00431-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Natural products possess structural complexity, diversity and chirality with attractive functions and biological activities that have significantly impacted drug discovery initiatives. Chiral natural products are abundant in nature but rarely occur as racemates. The occurrence of natural products as racemates is very intriguing from a biosynthetic point of view; as enzymes are chiral molecules, enzymatic reactions generating natural products should be stereospecific and lead to single-enantiomer products. Despite several reports in the literature describing racemic mixtures of stereoisomers isolated from natural sources, there has not been a comprehensive review of these intriguing racemic natural products. The discovery of many more natural racemates and their potential enzymatic sources in recent years allows us to describe the distribution and chemical diversity of this 'class of natural products' to enrich discussions on biosynthesis. In this Review, we describe the chemical classes, occurrence and distribution of pairs of enantiomers in nature and provide insights about recent advances in analytical methods used for their characterization. Special emphasis is on the biosynthesis, including plausible enzymatic and non-enzymatic formation of natural racemates, and their pharmacological significance.
Collapse
Affiliation(s)
- Gabin Thierry M. Bitchagno
- Agrobiosciences, Mohamed IV Polytechnic University, Ben-Guerir, Morocco
- Plant Sciences and Bioeconomy, Rothamsted Research, Harpenden, UK
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Vaderament-A. Nchiozem-Ngnitedem
- Department of Chemistry, University of Dschang, Dschang, Cameroon
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Dennis Melchert
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Serge Alain Fobofou
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| |
Collapse
|
5
|
Hu L, Wang Z, Tong Z, Hu P, Kong L, Luo M, Li X, Zhang Y, Huang Z, Zhang Y. Undescribed Meroterpenoids from
Hypericum japonicum
with Neuroprotective Effects on
H
2
O
2
Insult
SH‐SY5Y
Cells Targeting
Keap1‐Nrf2. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Zhenzhen Wang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| | - Zhou Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Ping Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Luqi Kong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Mengying Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Xiao‐Nian Li
- Kunming Institute of Botany Chinese Academy of Sciences Kunming 650204 People's Republic of China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Zhiyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 People's Republic of China
| | - Yonghui Zhang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| |
Collapse
|
6
|
Duan JY, Chen W, Zhao YQ, He LL, Li EC, Bai ZH, Wang YJ, Zhang CP. Flavonoids from Hypericum patulum enhance glucose consumption and attenuate lipid accumulation in HepG2 cells. J Food Biochem 2021; 45:e13898. [PMID: 34378802 DOI: 10.1111/jfbc.13898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Hypericum patulum has been used as a folk medicine for its varied therapeutic effects including antifungal, wound-healing, spasmolytic, stimulant, hypotensive activities. The water decoction is drank as tea could treat cold, infantile malnutrition. The present study aims to isolate the constituents of the plant and investigate their effects on the glucose consumption in insulin-resistant HepG2 cells, furthermore, lipid metabolism in oleic acid (OA)-treated HepG2 cells was also studied. The phytochemical investigation of the plant led to the isolation of eleven compounds, and their structures were identified by spectroscopic analysis as n-dotriacontanol (1), shikimic acid (2), 1-O-caffeoylquinic acid methyl ester (3), 5-O-caffeoylquinic acid methyl ester (4), 5-O-coumaroylquinic acid methyl ester (5), 5-O-caffeoylquinic acid butyl ester (6), quercetin-3-O-α-L-rhamnoside (7), quercetin (8), quercetin-3-O-(4״-methoxy)-α-L-rahmnopyranosyl (9), hyperoside (10), and rutin (11). The results revealed that compounds 7, 9, and 10 could enhance glucose consumption significantly in hyperglycemia induced HepG2 cells and insulin-resistant HepG2 cells. In addition, the western blotting analysis result exhibited that compounds 7, 9, and 10 in high concentration (5 μM, H) group could dramatically upregulate the expression of PPARγ protein, and even the effect of them had no significant difference compared with that of rosiglitazone. Furthermore, compounds 9 and 10 in middle concentration (2.5 μM, M) group and H group could dramatically promote triglyceride metabolism and decrease TG content in OA-treated HepG2 cells, and even in H group, reactive oxygen species (ROS) level were significantly decreased compared with model group. PRACTICAL APPLICATIONS: Hypericum patulum is a well-known plant of the genera Hypericum for its varied preventive and therapeutic potential activities. To study the chemical constituents and their effects on glucose and lipid metabolism in vitro, we detected glucose consumption in insulin-resistant HepG2 cells, triglyceride content and reactive oxygen species level in OA-treated HepG2 cells. In addition, PPARγ protein was also detected by western blotting analysis in the study. Compounds 1, 2, 3, 5, 6, 9, 10, and 11 were isolated from the plant for the first time. Quercetin-3-O-(4"-methoxy)-α-L-rahmnopyranosyl (9) and hyperoside (10) had potential therapeutic benefit against glucose and lipid metabolic disease. Therefore, this study might have certain guiding significance for further research and development of H. patulum.
Collapse
Affiliation(s)
- Jing-Yu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wei Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yang-Qi Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang-Liang He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - En-Chao Li
- Jining First People's Hospital, Jining, China
| | - Zhong-Hui Bai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yong-Jian Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chun-Ping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Nazir M, Saleem M, Tousif MI, Anwar MA, Surup F, Ali I, Wang D, Mamadalieva NZ, Alshammari E, Ashour ML, Ashour AM, Ahmed I, Elizbit, Green IR, Hussain H. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021; 11:957. [PMID: 34209734 PMCID: PMC8301922 DOI: 10.3390/biom11070957] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.
Collapse
Affiliation(s)
- Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, DG Khan Campus, University of Education Lahore, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Aijaz Anwar
- Pharmaceutical Research Division, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Frank Surup
- Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Iftikhar Ali
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Nilufar Z Mamadalieva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str 77, Tashkent 100170, Uzbekistan
| | - Elham Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizbit
- Department of Materials Engineering, National University of Sciences and Technology (NUST) H12, Islamabad 44000, Pakistan
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| |
Collapse
|
8
|
Duan Y, Xie S, Bu P, Guo Y, Shi Z, Guo Y, Cao Y, Sun W, Qi C, Zhang Y. Hypaluton A, an Immunosuppressive 3,4-nor-Polycyclic Polyprenylated Acylphloroglucinol from Hypericum patulum. J Org Chem 2021; 86:6478-6485. [DOI: 10.1021/acs.joc.1c00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuangshuang Xie
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengfei Bu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunfang Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Zhang X, Dong C, Wu G, Huo L, Yuan Y, Hu Y, Liu H, Tan H. The Biomimetic Total Syntheses of the Antiplasmodial Tomentosones A and B. Org Lett 2020; 22:8007-8011. [PMID: 33017154 DOI: 10.1021/acs.orglett.0c02943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first biomimetic total syntheses of natural phloroglucinols tomentosones A and B and their analogues have been accomplished. The synthetic strategy primarily referred to the potential biosynthetic precursors and their possible sequence of segments assembly by chemological evolution of the structural entities and enabled rapid access of the titled compounds in a practical fashion.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Institute of Tropical Medicine, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Chunmao Dong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, People's Republic of China
| | - Guiyun Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Institute of Tropical Medicine, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yunfei Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Yingjie Hu
- Institute of Tropical Medicine, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Hongxin Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, People's Republic of China
| |
Collapse
|