1
|
Wan Y, Adda AK, Qian J, Vaccaro DA, He P, Li G, Norton JR. Hydrogen Atom Transfer (HAT)-Mediated Remote Desaturation Enabled by Fe/Cr-H Cooperative Catalysis. J Am Chem Soc 2024; 146:4795-4802. [PMID: 38329998 DOI: 10.1021/jacs.3c13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An iron/chromium system (Fe(OAc)2, CpCr(CO)3H) catalyzes the preparation of β,γ- or γ,δ-unsaturated amides from 1,4,2-dioxazol-5-ones. An acyl nitrenoid iron complex seems likely to be responsible for C-H activation. A cascade of three H• transfer steps appears to be involved: (i) the abstraction of H• from a remote C-H bond by the nitrenoid N, (ii) the transfer of H• from Cr to N, and (iii) the abstraction of H• from a radical substituent by the Cr•. The observed kinetic isotope effects are consistent with the proposed mechanism if nitrenoid formation is the rate-determining step. The Fe/Cr catalysts can also desaturate substituted 1,4,2-dioxazol-5-ones to 3,5-dienamides.
Collapse
Affiliation(s)
- Yanjun Wan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Augustine K Adda
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Qian
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David A Vaccaro
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Peixian He
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Gang Li
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
2
|
Mayerhofer VJ, Lippolis M, Teskey CJ. Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones. Angew Chem Int Ed Engl 2024; 63:e202314870. [PMID: 37947372 DOI: 10.1002/anie.202314870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron reduction of ketones. Subsequent selective hydrogen-atom transfer from the cobalt hydride generates an allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy radical of previous radical olefin-carbonyl couplings, which were limited, as a result, to aldehydes. Applications of this novel and straightforward approach include the efficient synthesis of drug molecules, key intermediates in drug synthesis and site-selective late-stage functionalisation.
Collapse
Affiliation(s)
- Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Martina Lippolis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
Nie YC, Yang F, Li YH, Zhu R. Aldehydes as O-Nucleophiles in Cobalt Hydride Hydrogen Atom Transfer Catalysis: Overriding the Innate Somophilicity. Org Lett 2023; 25:889-894. [PMID: 36722752 DOI: 10.1021/acs.orglett.3c00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In metal hydride-catalyzed alkene hydrofunctionalization reactions via hydrogen atom transfer, simple carbonyl groups have been well-recognized as good somophiles at the carbon for C-C bond formation. Here we report an alternative pathway exploring the carbonyl as an O-nucleophile to make new C-O bonds during the CoH-catalyzed oxidative cyclization of alkenyl aldehydes. This reaction provides a rapid, mild, modular, and stereoselective (up to >20:1) entry to saturated O-heterocycles via nucleophilic trapping of an in situ-formed oxocarbenium intermediate. The key to overriding the carbonyl's innate somophilicity was found to be promoting the formation of organocobalt species and suppressing the radical exchange.
Collapse
Affiliation(s)
- Yi-Chen Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu-Hao Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yamaguchi Y, Seino Y, Suzuki A, Kamei Y, Yoshino T, Kojima M, Matsunaga S. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis. Org Lett 2022; 24:2441-2445. [DOI: 10.1021/acs.orglett.2c00700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Wang Z, Yue G, Ji X, Song H, Yan P, Zhao J, Jia X. Tandem Michael Addition-Cyclization of Nitroalkenes with 1,3-Dicarbonyl Compounds Accompanied by Removal of Nitro Group. J Org Chem 2021; 86:14131-14143. [PMID: 34494850 DOI: 10.1021/acs.joc.1c01586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A tandem Michael addition-cyclization of nitroalkenes with 1,3-dicarbonyl compounds was developed using phase transfer catalyst (PTC), allowing for the synthesis of polysubstituted-[4,5]-dihydrofuran in high yields. A wide range of substrates were demonstrated by this one-step process. Meanwhile, nitro group was substituted to form corresponding nitrite ion detected in the aqueous phase providing a reasonable pathway for denitrating poisonous and explosive nitro-containing compounds. The proposed mechanism was also supported by our DFT calculations.
Collapse
Affiliation(s)
- Zhizhao Wang
- College of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Guoren Yue
- College of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Xiangdong Ji
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China
| | - Hai Song
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China
| | - Penji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China
| | - Jixing Zhao
- Analysis and Testing Center, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- College of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| |
Collapse
|
6
|
Shi S, Salahi F, Vibbert HB, Rahman M, Snyder SA, Norton JR. Generation of α‐Boryl Radicals by H
.
Transfer and their Use in Cycloisomerizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shicheng Shi
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Farbod Salahi
- Department of Chemistry University of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Hunter B. Vibbert
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Maleeha Rahman
- Department of Chemistry Barnard College 3009 Broadway New York NY 10027 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Jack R. Norton
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| |
Collapse
|
7
|
Shi S, Salahi F, Vibbert HB, Rahman M, Snyder SA, Norton JR. Generation of α-Boryl Radicals by H . Transfer and their Use in Cycloisomerizations. Angew Chem Int Ed Engl 2021; 60:22678-22682. [PMID: 34405506 PMCID: PMC8582025 DOI: 10.1002/anie.202107665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 02/03/2023]
Abstract
Carbon-centered radicals can be stabilized by delocalization of their spin density into the vacant p orbital of a boron substituent. α-Vinyl boronates, in particular pinacol (Bpin) derivatives, are excellent hydrogen atom acceptors. Under H2 , in the presence of a cobaloxime catalyst, they generate α-boryl radicals; these species can undergo 5-exo radical cyclizations if appropriate double bond acceptors are present, leading to densely functionalized heterocycles with tertiary substituents on Bpin. The reaction shows good functional group tolerance with wide scope, and the resulting boronate products can be converted into other useful functionalities.
Collapse
Affiliation(s)
- Shicheng Shi
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027
| | - Farbod Salahi
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Hunter B. Vibbert
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027
| | - Maleeha Rahman
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027
| | - Scott A. Snyder
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Jack R. Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027
| |
Collapse
|
8
|
Xu PP, Liao JY, Zhang JJ, Shi WM, Liang C, Su GF, Mo DL. Nickel(II)-Catalyzed [3 + 2] Cycloaddition of Nitrones and Allenoates to Access N-Vinylindoles and N-Vinylpyrroles. Org Lett 2021; 23:7482-7486. [PMID: 34533319 DOI: 10.1021/acs.orglett.1c02695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of N-vinylindoles and N-vinylpyrroles were prepared in moderate to good yields through the nickel(II)-catalyzed [3 + 2] cycloaddition of α,β-unsaturated nitrones with allenoates under mild reaction conditions. A rational mechanism for the formation of N-vinylindoles was proposed based on the 18O-labeled experiments and key intermediates detected by high-resolution mass spectrometry trace experiments. The present method highlights a nickel(II)-controlled cyclization, atom-economical reaction, broad substrate scope, good functional group tolerance, and high Z-stereoselectivity for the enamine bond.
Collapse
Affiliation(s)
- Pei-Pei Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jun-Yi Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jia-Jie Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Wei-Min Shi
- School of Medicine, Guangxi University of Science and Technology, 257 Liu Shi Road, Liuzhou 545006, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
9
|
Abstract
AbstractCatalytic isomerization of alkenes is a highly atom-economical approach to upgrade from lower- to higher-value alkenes. Consequently, tremendous attention has been devoted to the development of this transformation, approaches which exploit cobalt catalysis are particularly attractive. This short review focuses on the cobalt-catalyzed alkene isomerization, including positional isomerization, geometric isomerization, and cycloisomerization. Three main types of reaction mechanism have been discussed to help the reader to better understand and make meaningful comparison between the different transformations.1 Introduction2 Positional Isomerization3 Geometric Isomerization4 Cycloisomerization5 Conclusion and Outlook
Collapse
|
10
|
Zhu Y, He Y, Tian W, Wang M, Zhou Z, Song X, Ding H, Xiao Q. Dual Cobalt and Photoredox Catalysis Enabled Redox‐Neutral Annulation of 2‐Propynolphenols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yao Zhu
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yong‐Qin He
- School of Pharmaceutical Science Nanchang University Nanchang 330006 People's Republic of China
| | - Wan‐Fa Tian
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Mei Wang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Zhao‐Zhao Zhou
- Department of Chemistry Nanchang Normal University Nanchang People's Republic of China
| | - Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Hai‐Xin Ding
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| |
Collapse
|
11
|
Saladrigas M, Puig J, Bonjoch J, Bradshaw B. Iron-Catalyzed Radical Intermolecular Addition of Unbiased Alkenes to Aldehydes. Org Lett 2020; 22:8111-8115. [PMID: 33017537 DOI: 10.1021/acs.orglett.0c03081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular reductive radical coupling of aldehydes with nonactivated alkenes, employing metal hydride atom transfer (MHAT) catalysis with a combination of FeII and FeIII salts, is described. This constitutes the first use of aldehydes as viable acceptor groups in MHAT reactions. The insights gained in this study led to the reexamination of the previously reported intramolecular version of the reaction, and the addition of FeII salts allowed the development of a more efficient second-generation approach.
Collapse
Affiliation(s)
- Mar Saladrigas
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Jordi Puig
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| |
Collapse
|