1
|
Xu R, Kuninobu Y. Synthesis and Properties of Cyclic π-Conjugated Molecules and Their Dication and Monoradical Cation. Org Lett 2024; 26:5582-5586. [PMID: 38900597 DOI: 10.1021/acs.orglett.4c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We synthesized cyclic π-conjugated molecules by double Friedel-Crafts reaction of amino group-substituted 1,2-bis(2-phenylethynyl)benzene with Meldrum's acid derivative. The structures of the cyclic π-conjugated molecules were determined by single-crystal X-ray structure analysis. The oxidation of the dimethylamino group-substituted π-conjugated molecule with NOBF4 gave a closed-shell dication that is stable at >210 °C. The monoradical cation of the di(4-methoxyphenyl)amino group-substituted π-conjugated molecule is stable in dichloromethane solution (half-life of nearly 15 days) and shows near-infrared absorption.
Collapse
Affiliation(s)
- Runjie Xu
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
2
|
Suzuki S, Kozaki M, Naota T. Intriguing Properties and Functionalities of Extremely Stable Radical Cation Species. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuichi Suzuki
- Graduate School of Engineering Science, Osaka University
| | | | - Takeshi Naota
- Graduate School of Engineering Science, Osaka University
| |
Collapse
|
3
|
Zheng X, Huang Z, Zheng Q, Wang L, Zhang C, Gao G. Planar Tetraindolodipleiadiene via Zirconium-Promoted Intramolecular Indolyl C4-H Homocoupling. Org Lett 2022; 24:4197-4201. [PMID: 35658459 DOI: 10.1021/acs.orglett.2c01484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel N-rimmed PAH molecule containing a dipleiadiene core (TIDP) was designed and synthesized from indole, wherein a ZrCl4-promoted intramolecular C4-H homocoupling reaction of the indole moieties was the key approach. TIDP exhibited a nearly full planar structure and antiaromaticity of the two embedded heptagonal rings. The extremely stable radical cation TIDP•+·PF6- was isolated quantitatively by oxidation with AgPF6.
Collapse
Affiliation(s)
- Xuesong Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Zhenmei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Qinze Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Linhua Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
4
|
Morimoto Y, Koo YH, Otsubo K, Kitakado H, Seki S, Osuka A, Tanaka T. Dibenzodiazapyracylenes: Doubly N‐Doped Cyclopenta‐Fused Polycyclic Molecules That Exhibit High Carrier Mobility. Angew Chem Int Ed Engl 2022; 61:e202200341. [DOI: 10.1002/anie.202200341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Yuki Morimoto
- Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Yun Hee Koo
- Department of Molecular Engineering, Graduate School of Engineering Kyoto University Nishikyo-ku, Kyoto 615-8510 Japan
| | - Kazuya Otsubo
- Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Hidetsugu Kitakado
- Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering Kyoto University Nishikyo-ku, Kyoto 615-8510 Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
- Department of Molecular Engineering, Graduate School of Engineering Kyoto University Nishikyo-ku, Kyoto 615-8510 Japan
| |
Collapse
|
5
|
Morimoto Y, Koo YH, Otsubo K, Kitakado H, Seki S, Osuka A, Tanaka T. Dibenzodiazapyracylenes: Doubly N‐Doped Cyclopenta‐fused Polycyclic Molecules That Exhibit High Carrier Mobility. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yun Hee Koo
- Kyoto University: Kyoto Daigaku Molecular Engineering JAPAN
| | | | | | - Shu Seki
- Kyoto University: Kyoto Daigaku Molecular Engineering JAPAN
| | | | | |
Collapse
|
6
|
Kataoka S, Suzuki S, Shiota Y, Yoshizawa K, Matsumoto T, Asano MS, Yoshihara T, Kitamura C, Kato SI. S,C,C- and O,C,C-Bridged Triarylamines and Their Persistent Radical Cations. J Org Chem 2021; 86:12559-12568. [PMID: 34465083 DOI: 10.1021/acs.joc.1c00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work reports the synthesis, crystal structures, and electronic properties of structurally constrained S,C,C- and O,C,C-bridged triarylamine derivatives and their persistent radical cations. O,C,C-Bridged triphenylamines and a dinaphthylphenylamine were obtained through a straightforward synthetic protocol. Similar to a previously reported S,C,C-bridged triphenylamine, the O,C,C-bridged triarylamines were easily oxidized to afford the corresponding radical cations, which were obtained as hexachloroantimonate salts. X-ray crystallographic analyses showed almost planar structures for these O,C,C-bridged triarylamine radical cations, which represent new members of the family of planar triarylamine radical cations without substituents on the aryl rings. Detailed investigations of the electronic properties of the S,C,C- and O,C,C-bridged triarylamine radical cations demonstrated that the spin and positive charge are sufficiently delocalized over the planar triarylamine scaffolds. The results provide the following insights into the effects of the bridging unit (sulfur vs oxygen) and the dibenzo-annulation on the spin delocalization in the bridged triarylamine radical cations: (1) An effective decrease of the spin density on the nitrogen atom is observed for the sulfur bridge relative to the oxygen bridge; and (2) a moderate decrease of the spin density on the oxygen atom rather than the nitrogen atom is induced by the dibenzo-annulation.
Collapse
Affiliation(s)
- Shunpei Kataoka
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taisuke Matsumoto
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-koh-en, Kasuga 816-8580, Japan
| | - Motoko S Asano
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Toshitada Yoshihara
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Chitoshi Kitamura
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| | - Shin-Ichiro Kato
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| |
Collapse
|