1
|
Bai Z, Sa Y, He X, Du H, Kong D. Visible-light-mediated decarboxylative allylation of vinylcyclopropanes with α-keto acids toward β,γ-alkenyl ketones. Org Biomol Chem 2025. [PMID: 40434793 DOI: 10.1039/d5ob00679a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
β,γ-Alkenyl ketones are privileged structural motifs in organic synthesis with broad pharmaceutical relevance. In this context, we have successfully developed a visible-light-driven radical cross-coupling of α-keto acids with vinylcyclopropanes, enabling the direct synthesis of a variety of β,γ-alkenyl ketones without the need for external metal co-catalysts, oxidants, or additives. Mechanistic studies support a radical-polar crossover pathway involving photogenerated acyl radicals and ring-opening of VCPs. The synthetic utility of this method is demonstrated by the concise, five-step synthesis of the clinical drug Seratrodast.
Collapse
Affiliation(s)
- Zhuofan Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yun Sa
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing He
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hongguang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Kitcatt D, Pogacar E, Mi L, Nicolle S, Lee AL. Light-Mediated Direct Decarboxylative Giese Aroylations without a Photocatalyst. J Org Chem 2024; 89:16055-16059. [PMID: 39438444 PMCID: PMC11536358 DOI: 10.1021/acs.joc.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Previous light-mediated approaches to the direct decarboxylative Giese aroylation reaction have mainly relied on the use of a photocatalyst and a reductive quenching pathway. By exploiting a mechanistically distinct oxidative protocol, we have successfully developed a photocatalyst-free, light-mediated direct Giese aroylation methodology.
Collapse
Affiliation(s)
- David
M. Kitcatt
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Eva Pogacar
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Le Mi
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Ai-Lan Lee
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| |
Collapse
|
3
|
Alam T, Gupta S, Patel BK. Electrochemical NH-Sulfoximidation with α-Keto Acids. Chemphyschem 2024; 25:e202400599. [PMID: 38884606 DOI: 10.1002/cphc.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
An electrochemical N-acylation of sulfoximine has been achieved via the coupling of α-keto acids and NH-sulfoximines. This process involves the sequential cleavage of C-C bond followed by C(sp2)-N bond formation, with the liberation of H2 and CO2 as the by-products. A library of N-aroylated sulfoximines is produced via the coupling of aroyl and sulfoximidoyl radicals by anodic oxidation under constant current electrolysis (CCE). The compatibility of the present protocol has been demonstrated by coupling of various bio-active compounds, such as NH-sulfoximine derived from (-)-borneol, L-menthol, D-glucose derivative, and some commercial drugs such as flurbiprofen, and ibuprofen. This late-stage functionalization highlights the importance of this sustainable protocol. Besides this, various control experiments and detection of H2 evolution have been performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shalini Gupta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Bisoyi A, Tripathy AR, Behera A, Yatham VR. α-C(sp 3)-H (Hetero)Arylation of Thioethers Enabled by Photoexcited Triplet Ketone Catalysis. J Org Chem 2024; 89:12540-12546. [PMID: 39163310 DOI: 10.1021/acs.joc.4c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We report herein α-C(sp3)-H (hetero)arylation of thioethers enabled by dual nickel and photoexcited triplet ketone catalysis. The mild reaction conditions of this protocol tolerate a variety of functional groups and further facilitate the late-stage functionalization of biologically relevant molecules to afford corresponding products in moderate to good yields. Preliminary mechanistic studies suggest that the generation of the α-thioalkyl radical takes place through a hydrogen atom transfer (HAT) event, which is involved in the rate-limiting step and in the nickel cycle, the reaction of the α-thioalkyl radical with Ni(0)Ln catalyst followed by oxidative addition of aryl bromide is the dominating pathway. Furthermore, the heteroaromatic benzylic thioethers can also be achieved from the corresponding reduced 4-cyano pyridine derivatives in the presence of a ketone catalyst through a radical-radical coupling reaction without metal. The increased yield of the products in the presence of DABCO might indicate a higher rate of α-thioalkyl radical formation from thioethers through the HAT event by DABCO radical cation.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Amit Behera
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
5
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
6
|
Lin Z, Zhou Q, Liu Y, Chen C, Jie J, Su H. Multiphoton tandem photoredox catalysis of [Ir(dFCF 3ppy) 2(dtbbpy)] + facilitating radical acylation reactions. Chem Sci 2024; 15:11919-11927. [PMID: 39092118 PMCID: PMC11290445 DOI: 10.1039/d4sc03183k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Photoredox catalytic radical acylation reactions, utilizing [Ir(dFCF3ppy)2(dtbbpy)]+ (IrIII) as the photocatalyst and α-keto acids as the starting substrates, have recently emerged as an attractive strategy for preparing ketone derivatives. While there is consensus on the importance of detailed mechanistic insights to maximize the formation of desired products, efforts focused on uncovering the underlying elementary mechanisms of IrIII photocatalytic radical acylation reactions are still lacking. Herein, using time-resolved spectroscopy, we observed the efficient quenching of the triplet state, 3IrIII*, via electron transfer from α-keto acids, resulting in the generatation of the reduced IrII. Subsequently, IrII rapidly transforms into a stable IrH+ species through protonation, with α-keto acid acting as a proton donor. Upon absorbing additional photon(s), IrH+ is expected to transform into IrH3, involving further hydrogenation/protonation. Emission and Fourier transform infrared (FTIR) spectroscopy, together with global analysis, identify the character of IrH3/3IrH3* and corroborate its contribution to representative radical acylation reactions (decarboxylative 1,4-addition of α-keto acids with Michael acceptors, decarboxylative coupling of α-keto acids with aryl halides, and decarboxylative cyclization of 2-alkenylarylisocyanides with α-keto acids), where IrH3/3IrH3* serves as the key species to trigger the second photoredox cycle. These results elucidate the existence and generality of the tandem photoredox catalysis mechanism for IrIII photocatalytic radical acylation reactions, providing advanced insights into the mechanism of IrIII-based photoredox processes and potentially expanding their application in the design and development of new synthetic methodologies.
Collapse
Affiliation(s)
- Zhicong Lin
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qian Zhou
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yan Liu
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Chenli Chen
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
7
|
Wu YJ, Ma C, Qiao JF, Cheng XY, Liang YF. Nickel-catalysed highly regioselective synthesis of β-acyl naphthalenes under reductive conditions. Chem Commun (Camb) 2024; 60:5723-5726. [PMID: 38742267 DOI: 10.1039/d4cc01660b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Over the past decade, significant progress has been made in the direct C-H acylation of naphthalenes, occurring at the α or β-positions to yield valuable ketones through Friedel-Crafts acylation or transition-metal-catalysed carbonylative coupling reactions. Nevertheless, highly regioselective acylation of naphthalenes remains a formidable challenge. Herein, we developed a nickel-catalysed reductive ring-opening reaction of 7-oxabenzonorbornadienes with acyl chlorides as the electrophilic coupling partner, providing a new method for the exclusive preparation of β-acyl naphthalenes.
Collapse
Affiliation(s)
- Yu-Juan Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Xiao-Yu Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
8
|
Tambe SD, Hwang HS, Park E, Cho EJ. Dual Photoredox and Nickel Catalysis in Regioselective Diacylation: Exploring the Versatility of Nickel Oxidation States in Allene Activation. Org Lett 2024; 26:4147-4151. [PMID: 38722196 DOI: 10.1021/acs.orglett.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We present a nickel-catalyzed regioselective radical diacylation of allenes with ketoacids to produce 1,4-dione products by dual photoredox and nickel catalysis. This integrated approach merges redox-active oxidative addition and reductive elimination steps with migratory insertion. The acyl radical generated in the photoredox cycle sequentially adds to Ni(I) and Ni(II) intermediates following a Ni(I)-Ni(II)-Ni(II)-Ni(III)-Ni(I) catalytic cycle. This methodology, supported by DFT calculations, demonstrates the potential of nickel catalysis in the creation of complex molecular architectures.
Collapse
Affiliation(s)
- Shrikant D Tambe
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eunhui Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Hutskalova V, Bou Hamdan F, Sparr C. Decarboxylative Nickel- and Photoredox-Catalyzed Aminocarbonylation of (Hetero)Aryl Bromides. Org Lett 2024; 26:2768-2772. [PMID: 37796536 PMCID: PMC11020166 DOI: 10.1021/acs.orglett.3c02389] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 10/06/2023]
Abstract
An efficient methodology for the photoredox- and nickel-catalyzed aminocarbonylation of (hetero)aryl bromides was developed. The utilization of readily available oxamic acids, the application of a broadly used organic photoredox catalyst (4CzIPN), and mild reaction conditions make this transformation an appealing alternative to classical amidation procedures. The generation of carbamoyl radicals was supported by trapping reactions with a hydrogen atom transfer catalyst in the presence of D2O, yielding the deuterated formamide. The generality of this deuteration protocol was confirmed for various oxamic acids.
Collapse
Affiliation(s)
- Valeriia Hutskalova
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Farhan Bou Hamdan
- Syngenta
Crop Protection AG, Crop Protection
Research, Schaffhauserstrasse
101, CH-4332 Stein, Switzerland
| | - Christof Sparr
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Mondal S, Midya SP, Mondal S, Das S, Ghosh P. Merging Photocatalytic Doubly-Decarboxylative C sp 2 -C sp 2 Cross-Coupling for Stereo-Selective (E)-α,β-Unsaturated Ketones Synthesis. Chemistry 2024; 30:e202303337. [PMID: 37987541 DOI: 10.1002/chem.202303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
A photocatalytic domain of doubly decarboxylative Csp 2 -Csp 2 cross coupling reaction is disclosed. Merging iridium and palladium photocatalysis manifested carbon-carbon bonds in a tandem dual-radical pathway. Present catalytic platform efficiently cross-coupled α, β-unsaturated acids and α-keto acids to afford a variety of α, β-unsaturated ketones with excellent (E)-selectivity and functional group tolerance. Mechanistically, photocatalyst implicated through reductive quenching cycle whereas cross coupling proceeded over one electron oxidative pallado-cycle.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
11
|
Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee AL. Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free. Chem Sci 2023; 14:9806-9813. [PMID: 37736650 PMCID: PMC10510818 DOI: 10.1039/d3sc03143h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Katie A Scott
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Elena Rongione
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Simon Nicolle
- GlaxoSmithKline Gunnels Wood Rd Stevenage SG1 2NY UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
12
|
Xu XC, Wu DN, Liang YX, Yang M, Yuan HY, Zhao YL. Visible Light-Induced Coupling Cyclization Reaction of α-Diazosulfonium Triflates with α-Oxocarboxylic Acids or Alkynes. J Org Chem 2022; 87:16604-16616. [DOI: 10.1021/acs.joc.2c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dan-Ni Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hai-Yan Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Hu CH, Li Y. Visible-Light Photoredox-Catalyzed Decarboxylation of α-Oxo Carboxylic Acids to C1-Deuterated Aldehydes and Aldehydes. J Org Chem 2022; 88:6401-6406. [DOI: 10.1021/acs.joc.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Chun-Hong Hu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Yang Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
14
|
Chai LL, Zhao YH, Young DJ, Lu X, Li HX. Ni(II)-Mediated Photochemical Oxidative Esterification of Aldehydes with Phenols. Org Lett 2022; 24:6908-6913. [PMID: 36121710 DOI: 10.1021/acs.orglett.2c02560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photopromoted, Ni-catalyzed acceptorless dehydrogenation esterification of phenols and aromatic aldehydes has been achieved in an oxidant- and external photosensitizer-free manner. This reliable and atom-economical transformation was tolerant to a wide range of functional groups and proceeded efficiently to give various aryl benzoates in moderate to high yields. Additionally, this photocatalytic system displayed high activity for the hydrogen-evolution cross coupling of aliphatic aldehydes and phenols employing dual nickel and aromatic aldehyde catalysis.
Collapse
Affiliation(s)
- Lu-Lu Chai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - You-Hui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Xinhua Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Tang L, Ouyang Y, Sun K, Yu B. Visible-light-promoted decarboxylative radical cascade cyclization to acylated benzimidazo/indolo[2,1- a]isoquinolin-6(5 H)-ones in water. RSC Adv 2022; 12:19736-19740. [PMID: 35865204 PMCID: PMC9260743 DOI: 10.1039/d2ra03467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
A metal-free visible-light-induced decarboxylative radical addition/cyclization procedure at room temperature was described for the synthesis of acylated benzimidazo/indolo[2,1-a]isoquinolines. The procedure was prepared in water via a reaction of functionalized 2-arylbenzoimidazoles or 2,3-diarylindoles and α-oxocarboxylic acids in the presence of phenyliodine(iii) diacetate (PIDA) in one step under mild reaction conditions. In this procedure, traditional heating and metal reagents could be effectively avoided to access 1,4-dicarbonyl-containing benzimidazo/indolo[2,1-a]isoquinoline-6(5H)-ones in satisfactory yields.
Collapse
Affiliation(s)
- Lili Tang
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China
| | - Yuejun Ouyang
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China
| | - Kai Sun
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China .,College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Bing Yu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
16
|
Huang L, Yang L, Wan JP, Zhou L, Liu Y, Hao G. Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Org Biomol Chem 2022; 20:4385-4390. [PMID: 35579116 DOI: 10.1039/d2ob00661h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new and metal-free three-component method for the synthesis of 2,4-disubstituted quinolines via the reactions of anilines, α-keto acids and alkyl lactates is reported. The reactions proceed in the presence of p-toluene sulfonic acid (p-TSA) and tert-butyl peroxybenzoate (TBPB) to provide diverse quinoline products via the construction of new CC double, C-C single and CN double bonds without producing any organic mass-based side product. Notably, the anti-inflammatory activity of the quinolines has been investigated by measuring their ability to inhibit NO release by lipopolysaccharide (LPS) induced RAW264.7 cells, leading to the identification of 4i, 4t and 4x as potent anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Lizhu Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Lu Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
17
|
Pudner GL, Camp I, Scheerer JR. A Nonoxidative Sequence for the Preparation of 1,2-Diketone Derivatives Using Aldehyde and Organometallic Building Blocks. J Org Chem 2022; 87:8213-8222. [PMID: 35613467 DOI: 10.1021/acs.joc.2c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigates a synthetic sequence for the preparation of 1,2-diketone products. The sequence avoids oxidative conditions and instead employs reliable transformations including the Horner-Wadsworth-Emmons and addition of Grignard reagents to N-methyl-N-methoxy (Weinreb) amide intermediates. The reaction sequence is suitable for the synthesis of nonsymmetric aliphatic and aryl substituted derivatives.
Collapse
Affiliation(s)
- Gwyneth L Pudner
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Isabela Camp
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R Scheerer
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
18
|
Ren SC, Yang X, Mondal B, Mou C, Tian W, Jin Z, Chi YR. Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones. Nat Commun 2022; 13:2846. [PMID: 35606378 PMCID: PMC9126905 DOI: 10.1038/s41467-022-30583-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
The carbene and photocatalyst co-catalyzed radical coupling of acyl electrophile and a radical precursor is emerging as attractive method for ketone synthesis. However, previous reports mainly limited to prefunctionalized radical precursors and two-component coupling. Herein, an N-heterocyclic carbene and photocatalyst catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles is disclosed, in which the carboxylic acids are directly used as radical precursors. The acyl imidazoles could also be generated in situ by reaction of a carboxylic acid with CDI thus furnishing a formally decarboxylative coupling of two carboxylic acids. In addition, the reaction is successfully extended to three-component coupling by using alkene as a third coupling partner via a radical relay process. The mild conditions, operational simplicity, and use of carboxylic acids as the reacting partners make our method a powerful strategy for construction of complex ketones from readily available starting materials, and late-stage modification of natural products and medicines. The combination of carbene- and photocatalysis has enabled unorthodox routes to ketone syntheses, but usually requires engineered or activated substrates. Herein the authors present a carbene- and photocatalytic decarboxylative radical coupling of carboxylic acids and acyl imidazoles, in which the carboxylic acids are directly used as radical precursors.
Collapse
Affiliation(s)
- Shi-Chao Ren
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bivas Mondal
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China. .,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
19
|
Kong X, Chen Y, Chen X, Lu ZX, Wang W, Ni SF, Cao ZY. A Practically Unified Electrochemical Strategy for Ni-Catalyzed Decarboxylative Cross-Coupling of Aryl Trimethylammonium Salts. Org Lett 2022; 24:2137-2142. [PMID: 35297250 DOI: 10.1021/acs.orglett.2c00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By merging electrocatalysis and nickel catalysis, a unified strategy has been successfully applied to achieve the decarboxylative cross-coupling of four types of α-oxocarboxylic acids and their derivatives with aryl trimethylammonium salts under mild conditions. Our strategy provides a practical way for preparing aryl ketones, amides, esters, or aldehydes.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Zheng-Xuan Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
20
|
Abe M, Nitta S, Miura E, Kimachi T, Inamoto K. Nitrile Synthesis via Desulfonylative-Smiles Rearrangement. J Org Chem 2022; 87:4460-4467. [PMID: 35229594 DOI: 10.1021/acs.joc.1c03011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we designed a simple nitrile synthesis from N-[(2-nitrophenyl)sulfonyl]benzamides via base-promoted intramolecular nucleophilic aromatic substitution. The process features redox-neutral conditions as well as no requirement of toxic cyanide species and transition metals. Our process shows broad scope and various functional group compatibility, affording a variety of (hetero)aromatic nitriles in good to excellent yields.
Collapse
Affiliation(s)
- Masahiro Abe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Sayasa Nitta
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Erina Miura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
21
|
Ibrahim YA, Li J, Ai L, Li B. A convenient approach for the synthesis of substituted pyrroles by using phosphoric acid as a catalyst and their photophysical properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Abstract
The quest to find milder and more sustainable methods to generate highly reactive, carbon-centred intermediates has led to a resurgence of interest in radical chemistry. In particular, carboxylic acids are seen as attractive radical precursors due their availability, low cost, diversity, and sustainability. Moreover, the corresponding nucleophilic carbon-radical can be easily accessed through a favourable radical decarboxylation process, extruding CO2 as a traceless by-product. This review summarizes the recent progress on using carboxylic acids directly as convenient radical precursors for the formation of carbon-carbon bonds via the 1,4-radical conjugate addition (Giese) reaction.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Rd, Stevenage SG1 2NY, UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
23
|
Gu Y, Yin H, Wakeling M, An J, Martin R. Defunctionalization of sp3 C–Heteroatom and sp3 C–C Bonds Enabled by Photoexcited Triplet Ketone Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yiting Gu
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Hongfei Yin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Matthew Wakeling
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Juzeng An
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
24
|
Jiang S, Zi-Tong Z, Young DJ, Lu-Lu C, Wu Q, Li HX. Visible-light mediated cross-coupling of aryl halides with sodium sulfinates via carbonyl-photoredox/nickel dual catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01850g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced nickel-catalyzed cross-coupling of arylsulfinates (ArSO2−) with (hetero)aryl halides (Ar’-X) via visible light photoexcitation of 2-chloro-thioxanthen-9-one (Cl-TXO) has been achieved in moderate to excellent yields. This photocoupling exhibited a broad...
Collapse
|
25
|
Oddy MJ, Kusza DA, Petersen WF. Visible-Light Mediated Metal-Free 6π-Photocyclization of N-Acrylamides: Thioxanthone Triplet Energy Transfer Enables the Synthesis of 3,4-Dihydroquinolin-2-ones. Org Lett 2021; 23:8963-8967. [PMID: 34756046 DOI: 10.1021/acs.orglett.1c03487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient thioxanthone-catalyzed triplet energy transfer process for the synthesis of 3,4-dihydroquinolin-2-ones via a 6π-photocyclization is reported. Featuring a rare example of a metal-free formal C(sp2)-H/C(sp3)-H arylation mediated by visible-light, this work hopes to inspire further interest in these small molecules as sustainable alternatives to existing transition-metal photocatalysts in related processes.
Collapse
Affiliation(s)
- Meghan J Oddy
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
26
|
Zhu DL, Jiang S, Wu Q, Wang H, Li HY, Li HX. Nickel-Catalyzed Etherification of Phenols and Aryl Halides through Visible-Light-Induced Energy Transfer. Org Lett 2021; 23:8327-8332. [PMID: 34633202 DOI: 10.1021/acs.orglett.1c03066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notwithstanding some progress in nickel-catalyzed etherification of alkanols and arylhalides, the ability of such a Ni-catalyzed transformation employing phenols to diaryl ethers is unsuccessful due to phenolates with much lower reduction potentials, which suppress the oxidation of nickel(II) intermediates into requisite Ni(III) species. We herein report visible-light-initiated, nickel-catalyzed O-arylation of phenols with arylhalides using t-BuNH(i-Pr) as the base and thioxanthen-9-one as the photosensitizer under visible light. This photocoupling exhibits a broad substrate scope.
Collapse
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.,Analysis and Testing Centre, Yancheng Teachers University, Yancheng 224051, China
| | - Shan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Sivaraj C, Gandhi T. Alternative and Uncommon Acylating Agents - An Alive and Kicking Methodology. Chem Asian J 2021; 16:2773-2794. [PMID: 34331736 DOI: 10.1002/asia.202100691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Functionalizing and derivatising organic molecules is a centerpiece in organic synthesis. Succinctly manipulating and installing acyl moieties in organic molecules spurred the interest of chemists owing to its occurrence in natural products, bioactive molecules, pharmaceuticals, and advanced materials. Traditionally, access to acylation reaction was achieved by Friedel-Crafts reaction, Schotten-Baumann, and Vilsmeier-Haack acylation, however, these protocols own pitfalls. Further to make the acylation process attractive and environmentally friendly, toluene, aldehydes, alcohols, α-keto acids, amines, amides, esters, ethers, nitriles, alkynes, alkenes, ketenes, N-acylbenzotriazoles, ketones, thioacids, oximes, thiazolium carbinols, PIDA, diacyl disulfides and acyl salts were used as an acyl surrogates/reagents. Amusingly, these acylating reagents are considered uncommon and alternative to carboxylic acids, acid chlorides and acetic anhydrides. This short review aims to encompass the usage of acylating agents in transition-metal, metal-free, light-driven and other demanding conditions, and thus reveals their practicality.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Chandrasekaran Sivaraj and Thirumanavelan Gandhi, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Chandrasekaran Sivaraj and Thirumanavelan Gandhi, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
28
|
Zhang L, Chen S, He H, Li W, Zhu C, Xie J. Photoredox/nickel-catalyzed hydroacylation of ethylene with aromatic acids. Chem Commun (Camb) 2021; 57:9064-9067. [PMID: 34498636 DOI: 10.1039/d1cc04188f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a general, practical and scalable hydroacylation reaction of ethylene with aromatic carboxylic acids with the synergistic combination of nickel and photoredox catalysis. Under ambient temperature and pressure, feedstock chemicals such as ethylene can be converted into high-value-added aromatic ketones in moderate to good yields (up to 92%) with reaction time of 2-6 hours.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hengchi He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Long L, Wang J, Gu L, Yang S, Qiao L, Luo G, Chen Z. Hypervalent Iodine(III)-Promoted Radical Oxidative C-H Annulation of Arylamines with α-Keto Acids. J Org Chem 2021; 86:12084-12092. [PMID: 34342452 DOI: 10.1021/acs.joc.1c01424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel catalyst-free radical oxidative C-H annulation reaction of arylamines with α-keto acids toward benzoxazin-2-ones synthesis under mild conditions was developed. This hypervalent iodine(III)-promoted process eliminated the use of a metal catalyst or additive with high levels of functional group tolerance. Hypervalent iodine(III) was both an oxidant and a radical initiator for this reaction. The synthetic utility of this method was confirmed by the synthesis of the natural product cephalandole A.
Collapse
Affiliation(s)
- Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Jieyan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Liuqing Gu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Shiguang Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| |
Collapse
|
30
|
Zhao H, Ni N, Li X, Cheng D, Xu X. The decarboxylation coupling reaction of α-keto acid with Baylis-Hillman carbonates by visible light photoredox catalysis. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Song T, Ma Z, Wang X, Yang Y. Synthesis of α-Keto Acids via Oxidation of Alkenes Catalyzed by a Bifunctional Iron Nanocomposite. Org Lett 2021; 23:5917-5921. [PMID: 34236867 DOI: 10.1021/acs.orglett.1c02021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient methodology for synthesis of α-keto acids via oxidation of alkenes using TBHP as oxidant catalyzed by a bifunctional iron nanocomposite has been established. A variety of alkenes with different functional groups were smoothly oxidized into their corresponding α-keto acids in up to 80% yield. Moreover, the bifunctional iron nanocomposite catalyst showed outstanding catalytic stability for successive recycles without appreciable loss of activity.
Collapse
Affiliation(s)
- Tao Song
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shandong Energy Institute, Qingdao 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhiming Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Wang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shandong Energy Institute, Qingdao 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
32
|
Huang F, Wang F, Hu Q, Tang L, Xu D, Fang Y, Zhang W. Monodisperse CuPd alloy nanoparticles as efficient and reusable catalyst for the C (sp
2
)–H bond activation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Huang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
- School of Chemistry and Chemical Engineering Huangshan University Huangshan PR China
| | - Feifan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Qiyan Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Lin Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Dongping Xu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Yang Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Wu Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| |
Collapse
|
33
|
Zhu HL, Zeng FL, Chen XL, Sun K, Li HC, Yuan XY, Qu LB, Yu B. Acyl Radicals from α-Keto Acids: Metal-Free Visible-Light-Promoted Acylation of Heterocycles. Org Lett 2021; 23:2976-2980. [PMID: 33780256 DOI: 10.1021/acs.orglett.1c00655] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general and metal-free visible-light-induced decarboxylative arylation procedure at room temperature was described for the construction of acylated heterocyclic derivatives, such as benzimidazo/indolo[2,1-a]isoquinolin-6(5H)-ones, aroylazaspiro[4.5]trienones, thioflavones, and so on. This practical arylation procedure was conducted by using 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as a photocatalyst under mild conditions, which avoided the use of an additional base, traditional heating, and metal reagents.
Collapse
Affiliation(s)
- Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Ya Yuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Xiao J, Guo F, Li Y, Li F, Li Q, Tang ZL. Iodine Promoted Conversion of Esters to Nitriles and Ketones under Metal-Free Conditions. J Org Chem 2021; 86:2028-2035. [PMID: 33397102 DOI: 10.1021/acs.joc.0c02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fengzhe Guo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinfeng Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fangshao Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Zi-Long Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
35
|
Xie P, Xue C, Wang C, Du D, Shi S. Merging CF 3SO 2Na photocatalysis with palladium catalysis to enable decarboxylative cross-coupling for the synthesis of aromatic ketones at room temperature. Org Chem Front 2021. [DOI: 10.1039/d1qo00438g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By merging CF3SO2Na-mediated photocatalysis with palladium catalysis, an efficient decarboxylative coupling strategy of α-keto acids and aryl boronic acids has been developed for the synthesis of aromatic ketones.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Cancan Wang
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - SanShan Shi
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| |
Collapse
|
36
|
Xie K, Jiang M, Chen X, Lü Q, Yu B. Application of α-Keto Acids in Metal-Free Photocatalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zhu DL, Jiang S, Wu Q, Wang H, Chai LL, Li HY, Li HX. Visible-Light-Induced Nickel-Catalyzed P(O)–C(sp2) Coupling Using Thioxanthen-9-one as a Photoredox Catalysis. Org Lett 2020; 23:160-165. [DOI: 10.1021/acs.orglett.0c03892] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lu-Lu Chai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|