1
|
Yang Y, Zhong S, Ma D, Zhao W, Wang G. Nickel-Catalyzed and Tetrahydroxydiboron-Mediated Allylation of Aldehydes with Allyl Alcohols. J Org Chem 2025; 90:3653-3658. [PMID: 39899805 DOI: 10.1021/acs.joc.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The allylation of carbonyl compounds to form homoallylic alcohols represents one of the significant synthetic transformations. In this letter, we describe a new method for the allylation of aldehydes with allyl alcohols facilitated by nickel chloride and tetrahydroxydiboron. This approach offers a mild and straightforward procedure for the synthesis of homoallylic alcohols from aldehydes and ketones.
Collapse
Affiliation(s)
- Yingfan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Siyi Zhong
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Daofan Ma
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
2
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
3
|
Radical addition-triggered remote functionalization of C–H bond via 1, n-hydrogen atom transfer process. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Mollner TA, Giltrap AM, Zeng Y, Demyanenko Y, Buchanan C, Oehlrich D, Baldwin AJ, Anthony DC, Mohammed S, Davis BG. Reductive site-selective atypical C, Z-type/N2-C2 cleavage allows C-terminal protein amidation. SCIENCE ADVANCES 2022; 8:eabl8675. [PMID: 35394836 PMCID: PMC8993120 DOI: 10.1126/sciadv.abl8675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomolecule environments can enhance chemistries with the potential to mediate and modulate self-modification (e.g., self-cleavage). While these enhanced modes are found in certain biomolecules (e.g., RNA ribozymes), it is more rare in proteins. Targeted proteolytic cleavage is vital to physiology, biotechnology, and even emerging therapy. Yet, purely chemically induced methods for the site-selective cleavage of proteins remain scarce. Here, as a proof of principle, we designed and tested a system intended to combine protein-enhanced chemistry with tag modification to enable synthetic reductive protein chemistries promoted by diboron. This reductively driven, single-electron chemistry now enables an operationally simple, site-selective cleavage protocol for proteins directed to readily accessible dehydroalanine (Dha) residues as tags under aqueous conditions and in cell lysates. In this way, a mild, efficient, enzyme-free method now allows not only precise chemical proteolysis but also simultaneous use in the removal of affinity tags and/or protein-terminus editing to create altered N- and C-termini such as protein amidation (─CONH2).
Collapse
Affiliation(s)
- Tim A. Mollner
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Yibo Zeng
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Charles Buchanan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Daniel Oehlrich
- Global Medicinal Chemistry, Janssen Research & Development, Beerse, Belgium
| | - Andrew J. Baldwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
| | | | - Shabaz Mohammed
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- Corresponding author.
| |
Collapse
|
5
|
Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. J Org Chem 2022; 87:3788-3793. [PMID: 35188782 DOI: 10.1021/acs.joc.1c02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel tetrahydroxydiboron and nickel chloride cocatalyzed radical cyclization cascade with a broad substrate scope and an ultrashort reaction time was developed. The mechanistic investigation indicated that the reaction might involve a homocleavage of tetrahydroxydiboron and nickel hydride intermediates. This approach enables the simple and efficient synthesis of a series of heteropolycycles.
Collapse
Affiliation(s)
- Zequn Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Longhui Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
6
|
Zhao Q, Espuche B, Kang N, Moya S, Astruc D. Cobalt sandwich-stabilized rhodium nanocatalysts for ammonia borane and tetrahydroxydiboron hydrolysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bulky organocobalt sandwich-supported Rh nanoparticle is an efficient, stable and recyclable nanocatalyst for hydrolysis of both ammonia borane and tetrahydroxydiboron to H2.
Collapse
Affiliation(s)
- Qiuxia Zhao
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, 33405 Talence Cedex, France
- LCC, CNRS & University of Toulouse III, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Bruno Espuche
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | - Sergio Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Didier Astruc
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| |
Collapse
|
7
|
Wang P, Li Y, Wang G. Tetrahydroxydiboron-Initiated Atom-Transfer Radical Cyclization. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1485-4956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractIn this work, the first diboron reagent initiated atom-transfer radical cyclization was reported, in which the boryl radicals were generated by the homolytic cleavage of a B–B single bond weakened by the coordination of Lewis base. To clarify the role of carbonate and DMF in the cleavage of B–B bond, we calculated the free energy diagram of two pathways by density functional theory (DFT) investigations. The DFT calculation showed that the presence of carbonate facilitates the B–B bond cleavage to form boron radicals, which can be further stabilized by DMF. Subsequent atom-transfer cyclization initiated by stabilized dihydroxyboron radical is also energetically favored.
Collapse
|
8
|
Yang K, Wang P, Sun ZY, Guo M, Zhao W, Tang X, Wang G. Hydrogen-Bonding Controlled Nickel-Catalyzed Regioselective Cyclotrimerization of Terminal Alkynes. Org Lett 2021; 23:3933-3938. [PMID: 33970647 DOI: 10.1021/acs.orglett.1c01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report a hydrogen-bonding controlled nickel-catalyzed regioselective cyclotrimerization of terminal alkynes in moderate to excellent yields with high regioselectivities toward 1,3,5-trisubstituted benzenes. This method features a cheap catalyst, mild reaction conditions, and excellent functional group compatibility. The Ni-B(OH)2 complex in situ generated from NiCl2·DME and tetrahydroxydiboron might act as an active catalyst. After three consecutive cis-additions of terminal alkynes, internal migratory insertion cyclization, and β-boron elimination induced aromatization, 1,3,5-trisubstituted benzenes were selectively established.
Collapse
Affiliation(s)
- Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Pengfei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Zhou S, Hou X, Yang K, Guo M, Zhao W, Tang X, Wang G. Direct Synthesis of N-Difluoromethyl-2-pyridones from Pyridines. J Org Chem 2021; 86:6879-6887. [PMID: 33905251 DOI: 10.1021/acs.joc.1c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method for the synthesis of N-difluoromethyl-2-pyridones was described. This protocol enables the synthesis of N-difluoromethyl-2-pyridones from readily available pyridines using mild reaction conditions that are compatible with a wide range of functional groups. The preliminary mechanistic study revealed that N-difluoromethylpyridinium salts were the key intermediates to complete this conversion.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Metal-Free Difunctionalization of Pyridines: Selective Construction of N-CF 2H and N-CHO Dihydropyridines. Org Lett 2021; 23:2205-2211. [PMID: 33635677 DOI: 10.1021/acs.orglett.1c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
11
|
Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org Lett 2020; 22:9313-9318. [DOI: 10.1021/acs.orglett.0c03540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|