1
|
Cham N, Doyle RP. Corrin Ring Modification in Peptide Drug Development - a Brief History of "Corrination". ChemMedChem 2025; 20:e202500129. [PMID: 40082209 PMCID: PMC12091844 DOI: 10.1002/cmdc.202500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
Recently, the term "corrination" was coined to describe the conjugate modification of a peptide, protein, small molecule, or radionuclide with a corrin ring-containing molecule. By exploiting the innate chemicophysical properties of corrin ring-containing compounds, corrination has been explored for drug development and targeted/localized delivery of probes and therapeutics. Most recently, it is in the field of peptide-based therapeutics that corrination is generating significant interest. Peptide-based drugs possess several limitations that restrict their clinical application, including poor solubility and stability, low oral bioavailability, and negative side effects often due to drug distribution. In this mini review, the design and synthetic approaches to peptide corrination are described, along with examples of in vitro, ex vivo, and in vivo biological evaluations of corrinated conjugates, which demonstrate the broad applicability of the technique, namely 1) mitigated peptide aggregation, 2) improved protection against proteolysis, 3) reduced negative side effects via targeted localization, 4) regioselective production of peptide disulfide bonds, and 5) improved oral drug absorption. Herein, it is described how corrination offers a facile route to improving peptide pharmacokinetic and pharmacodynamic properties, making this a useful platform technology in the field of peptide drug development.
Collapse
Affiliation(s)
- Nancy Cham
- Department of ChemistrySyracuse University111 College PlaceSyracuseNY13244USA
| | - Robert P. Doyle
- Department of ChemistrySyracuse University111 College PlaceSyracuseNY13244USA
- Department of Pharmacology and MedicineState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
| |
Collapse
|
2
|
Li T, Zhang R, Gong H, Tang Z, Li X, Gong Z, Challa M, Zou C, Zhang SL, Guo J, He Y. Synthesis and antibacterial evaluations of novel vancomycin analogues targeting bacteria membrane to combat Gram-negative infections. Eur J Med Chem 2025; 289:117483. [PMID: 40056801 DOI: 10.1016/j.ejmech.2025.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Vancomycin is primarily used to treat severe infections caused by Gram-positive bacteria and is often considered as the last-resort therapy in the life-threatening situation. However, it is inherently ineffective against Gram-negative bacteria. Herein, we report the design, synthesis, and biological evaluation of novel vancomycin analogues incorporated with lipophilic cationic groups. Through structural optimization and structure-activity relationship (SAR) studies, we identified vancomycin analogue 18b, which exhibited remarkable antibacterial activity against A. baumannii ATCC 17978, with a MIC of 8 μg/mL. In contrast, vancomycin showed no activity against this strain, even at concentration as high as 128 μg/mL. Further investigations revealed that 18b possesses rapid bactericidal properties, low toxicity, and a reduced propensity to induce bacterial resistance. The exceptional antibacterial performance of 18b is partially attributed to the presence of membrane-targeting, lipophilic piperazine cationic groups. In a mouse model infected with A. baumannii ATCC 17978, 18b exhibited excellent efficacy at a dose of 20 mg/kg, while no toxicity was observed. These findings highlight 18b as a promising candidate for further development in the fight against Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Ruixue Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Hongzhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Beibei, Chongqing, 400714, PR China; Chongqing Institute for Food and Drug Control, Chongqing, 401120, PR China
| | - Xinyu Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Zhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Mahesh Challa
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Cheng Zou
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China.
| | - Jian Guo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China.
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Shuitu Technology Development Zone, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, PR China.
| |
Collapse
|
3
|
Stackpole BJ, Fredericksen JM, Brasch NE. Exploring the potential of the vitamin B 12 derivative azidocobalamin to undergo Huisgen 1,3-dipolar azide-alkyne cycloaddition reactions. J Inorg Biochem 2024; 254:112504. [PMID: 38412777 DOI: 10.1016/j.jinorgbio.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
There is considerable interest in using the metalloprotein cofactor vitamin B12 as a vehicle to deliver drugs and diagnostic agents into mammalian or bacterial cells by exploiting the B12-specific active uptake pathways. Conjugation of the cargo via the β-axial site or the 5'-OH of the ribose of the nucleotide are the most desirable sites, to maximise intracellular uptake. Herein we show the potential of conjugation at the beta-azido ligand of the vitamin B12 derivative azidocobalamin via a click-type azide-alkyne 1,3-dipolar cycloaddition (Huisgen cycloaddition) reaction. Reacting azidocobalamin with dimethyl acetylenedicarboxylate at 40 °C results in essentially stoichiometric conversion of azidocobalamin to the corresponding triazolato complex. The stability of the complex as a function of pH and in the presence of cyanide were investigated. The complex is stable in pD 7.0 phosphate buffer for 24 h. The rate of beta-axial ligand substitution was found to be one order of magnitude slower for the triazolatocobalamin complex compared with azidocobalamin.
Collapse
Affiliation(s)
- Ben J Stackpole
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| | - Jessica M Fredericksen
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Max BL, Angolile CM, Raymond VG, Mashauri HL. The dawn of repurposing vitamins as potential novel antimicrobial agents: A call for global emergency response amidst AMR crisis. Health Sci Rep 2023; 6:e1276. [PMID: 37216052 PMCID: PMC10199457 DOI: 10.1002/hsr2.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Amidst, the global pandemic of antimicrobial resistance (AMR), the rate at which AMR increases overwhelms the increased efforts to discover new effective antimicrobials. There is a persistent need for alternative treatment modalities so as to keep up with the pace. AMR is the leading cause of death in the world and its health and economic consequences suggest the urgent need for sustainable interventions. Vitamins have consistently proven to have antimicrobial activity as well as slowing down the AMR rate by influencing the AMR genes even towards extensive multidrug resistant strains. Evidences suggest that the use of some vitamins on their own or in combination with existing antimicrobial agents could be a breakthrough towards combating AMR. This will widen the antimicrobial agents' options in the treatment arena, preserve the antimicrobial agents susceptible to develop resistant so that they can be used in severe infections only, reduce the tension and burden of the AMR crisis significantly and give enough room for development of new antimicrobial agents. Moreover, almost all viral, fungal, parasitic and bacterial resistant strains of concern as listed by World Health Organization have been found to be sensitive to several vitamins either synergistically with other antimicrobials or independently. Considering their widened spectrum of immunomodulatory and antimicrobial effect, some vitamins can further be repositioned as prophylactic antimicrobial agents in clinical situations like in presurgeries prophylaxis so as to avoid unnecessary use of antimicrobials especially antibiotics. Various relevant AMR stakeholders should invest in clinical trials and systematic reviews with available data to enable quick repositioning of some potential vitamins as antimicrobial agents as an emergency rapid response towards AMR Crisis. This includes the preparation of guidelines containing specificity of which vitamin to be used for treatment of which type of infection.
Collapse
Affiliation(s)
- Baraka L. Max
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Cornel M. Angolile
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Community Medicine, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Vicky G. Raymond
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| | - Harold L. Mashauri
- Department of Epidemiology and Biostatistics, Institute of Public HealthKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of PhysiologyKilimanjaro Christian Medical University CollegeMoshiTanzania
- Department of Internal MedicineKilimanjaro Christian Medical University CollegeMoshiTanzania
| |
Collapse
|
5
|
Bellavita R, Leone L, Maione A, Falcigno L, D'Auria G, Merlino F, Grieco P, Nastri F, Galdiero E, Lombardi A, Galdiero S, Falanga A. Synthesis of temporin L hydroxamate-based peptides and evaluation of their coordination properties with iron(III ). Dalton Trans 2023; 52:3954-3963. [PMID: 36744636 DOI: 10.1039/d2dt04099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ferric iron is an essential nutrient for bacterial growth. Pathogenic bacteria synthesize iron-chelating entities known as siderophores to sequestrate ferric iron from host organisms in order to colonize and replicate. The development of antimicrobial peptides (AMPs) conjugated to iron chelators represents a promising strategy for reducing the iron availability, inducing bacterial death, and enhancing simultaneously the efficacy of AMPs. Here we designed, synthesized, and characterized three hydroxamate-based peptides Pep-cyc1, Pep-cyc2, and Pep-cyc3, derived from a cyclic temporin L peptide (Pep-cyc) developed previously by some of us. The Fe3+ complex formation of each ligand was characterized by UV-visible spectroscopy, mass spectrometry, and IR and NMR spectroscopies. In addition, the effect of Fe3+ on the stabilization of the α-helix conformation of hydroxamate-based peptides and the cotton effect were examined by CD spectroscopy. Moreover, the antimicrobial results obtained in vitro on some Gram-negative strains (K. pneumoniae and E. coli) showed the ability of each peptide to chelate efficaciously Fe3+ obtaining a reduction of MIC values in comparison to their parent peptide Pep-cyc. Our results demonstrated that siderophore conjugation could increase the efficacy and selectivity of AMPs used for the treatment of infectious diseases caused by Gram-negative pathogens.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli "Federico II", Napoli, Italy
| | - Angela Maione
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Gabriella D'Auria
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II", Napoli, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II", Napoli, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, 80055, Portici, Italy.
| |
Collapse
|
6
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Hamed S, Emara M. Antibacterial and Antivirulence Activities of Acetate, Zinc Oxide Nanoparticles, and Vitamin C Against E. coli O157:H7 and P. aeruginosa. Curr Microbiol 2023; 80:57. [PMID: 36588146 PMCID: PMC9805986 DOI: 10.1007/s00284-022-03151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Infectious diseases remain one of the major health challenges worldwide due to the problem of antimicrobial resistance. Conventional antimicrobials have the disadvantage that bacteria rapidly acquire resistance to them, so alternatives must be developed to combat antibiotic resistance. Nanotechnology and the repurposing of existing drugs with known biological profiles are new approaches to replacing conventional antimicrobials. In this paper, we have tested the antibacterial activity of sodium acetate (NaA), vitamin C (VC), and zinc oxide nanoparticles (ZnO NPs) against Escherichia coli O157:H7 ATCC 51659 and Pseudomonas aeruginosa ATCC 27853. MIC values for tested compounds ranged from 0.08 to 6.5 mg ml-1, and the effect of combinations and safety profiles against HepG2 cell line of these compounds were also evaluated. At sub-MIC values, tested compounds had a potential antivirulence effect by inhibiting motility and reducing biofilm formation and maturation. Collectively, ZnO NPs and VC are considered safe alternatives to traditional antibiotics that are capable of reducing the development of antibiotic resistance in microbes. Graphical abstract representing the main aim and the final findings of our work. Spread of multidrug-resistant (MDR) bacterial strains created an urge for alternative safe antimicrobial agents. In this work, we found that ZnO NPs and vitamin C are potential candidates that could be used against MDR E.coli and P. aeruginosa.
Collapse
Affiliation(s)
- Selwan Hamed
- grid.412093.d0000 0000 9853 2750Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795 Egypt
| | - Mohamed Emara
- grid.412093.d0000 0000 9853 2750Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795 Egypt
| |
Collapse
|
8
|
Marchianò V, Matos M, Serrano E, Álvarez JR, Marcet I, Carmen Blanco-López M, Gutiérrez G. Lyophilised nanovesicles loaded with vitamin B12. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
10
|
Pu H, Jiang T, Peng D, Xia J, Gao J, Wang Y, Yan X, Huang X, Duan Y, Huang Y. Degradation of mirubactin to multiple siderophores with varying Fe(III) chelation properties. Org Biomol Chem 2022; 20:5066-5070. [PMID: 35703354 DOI: 10.1039/d2ob00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three siderophores mirubactins B-D (4-6) were identified as the degradation products of previously isolated mirubactin (1). Their structures were revealed by HR-ESI-MS/MS, NMR analyses, and density functional calculations, among which 4 contains an unusual cyclic amidine functionality. Cyclic voltammetry showed that 5 and 6 have reduced iron complexing capacity. Mirubactin (1) and Fe(III) could also form a stable complex, which may be an ingenious approach to compete for iron acquisition by the producing organisms.
Collapse
Affiliation(s)
- Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Ting Jiang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, 410100, P. R. China
| | - Juanjuan Xia
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, 410100, P. R. China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Xiaohui Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, P. R. China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, P. R. China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, P. R. China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, P. R. China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
11
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
12
|
Pandeya A, Yang L, Alegun O, Karunasena C, Risko C, Li Z, Wei Y. Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria. PLoS One 2021; 16:e0260023. [PMID: 34767592 PMCID: PMC8589159 DOI: 10.1371/journal.pone.0260023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is a major public health concern. The shrinking selection of effective antibiotics and lack of new development is making the situation worse. Gram-negative bacteria more specifically pose serious threat because of their double layered cell envelope and effective efflux systems, which is a challenge for drugs to penetrate. One promising approach to breach this barrier is the "Trojan horse strategy". In this technique, an antibiotic molecule is conjugated with a nutrient molecule that helps the antibiotic to enter the cell through dedicated transporters for the nutrient. Here, we explored the approach using biotin conjugation with a florescent molecule Atto565 to determine if biotinylation enhances accumulation. Biotin is an essential vitamin for bacteria and is obtained through either synthesis or uptake from the environment. We found that biotinylation enhanced accumulation of Atto565 in E. coli. However, the enhancement did not seem to be due to uptake through biotin transporters since the presence of free biotin had no observable impact on accumulation. Accumulated compound was mostly in the periplasm, as determined by cell fractionation studies. This was further confirmed through the observation that expression of streptavidin in the periplasm specifically enhanced the accumulation of biotinylated Atto565. This enhancement was not observed when streptavidin was expressed in the cytoplasm indicating no significant distribution of the compound inside the cytoplasm. Using gene knockout strains, plasmid complementation and mutagenesis studies we demonstrated that biotinylation made the compound a better passenger through OmpC, an outer membrane porin. Density functional theory (DFT)-based evaluation of the three-dimensional geometries showed that biotinylation did not directly stabilize the conformation of the compound to make it favorable for the entry through a pore. Further studies including molecular dynamics simulations are necessary to determine the possible mechanisms of enhanced accumulation of the biotinylated Atto565.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Olaniyi Alegun
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Chamikara Karunasena
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
- Centre for Applied Energy and Research, University of Kentucky, Lexington, KY, United States of America
| | - Chad Risko
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
- Centre for Applied Energy and Research, University of Kentucky, Lexington, KY, United States of America
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
13
|
Nazli A, He D, Xu H, Wang ZP, He Y. A Comparative Insight on the Newly Emerging Rifamycins: Rifametane, Rifalazil, TNP-2092 and TNP-2198. Curr Med Chem 2021; 29:2846-2862. [PMID: 34365945 DOI: 10.2174/0929867328666210806114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Rifamycins are considered a milestone for tuberculosis (TB) treatment because of their proficient sterilizing ability. Currently, available TB treatments are complicated and need a long duration, which ultimately leads to failure of patient compliance. Some new rifamycin derivatives, i.e., rifametane, TNP-2092 (rifamycin-quinolizinonehybrid), and TNP-2198 (rifamycin-nitromidazole hybrid) are under clinical trials, which are attempting to overcome the problems associated with TB treatment. The undertaken review is intended to compare the pharmacokinetics, pharmacodynamics and safety profiles of these rifamycins, including rifalazil, another derivative terminated in phase II trials, and already approved rifamycins. The emerging resistance of microbes is an imperative consideration associated with antibiotics. Resistance development potential of microbial strains against rifamycins and an overview of chemistry, as well as structure-activity relationship (SAR) of rifamycins, are briefly described. Moreover, issues associated with rifamycins are discussed as well. We expect that newly emerging rifamycins shall appear as potential tools for TB treatment in the near future.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - David He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - Huacheng Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - Zhi-Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| |
Collapse
|
14
|
Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021; 9:659845. [PMID: 33996753 PMCID: PMC8120311 DOI: 10.3389/fchem.2021.659845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
The tale of abate in antibiotics continued defense mechanisms that chaperone the rise of drug-defying superbugs—on the other hand, the astray in antibacterial drug discovery and development. Our salvation lies in circumventing the genesis of resistance. Considering the competitive advantages of antibacterial chemotherapeutic agents equipped with multiple warheads against resistance, the development of hybrids has rejuvenated. The adoption of antibiotic hybrid paradigm to macrocycles has advanced novel chemical entities to clinical trials. The multi-targeted TD-1792, for instance, retained potent antibacterial activities against multiple strains that are resistant to its constituent, vancomycin. Moreover, the antibiotic conjugation of rifamycins has provided hybrid clinical candidates with desirable efficacy and safety profiles. In 2020, the U.S. FDA has granted an orphan drug designation to TNP-2092, a conjugate of rifamycin and fluoroquinolone, for the treatment of prosthetic joint infections. DSTA4637S is a pioneer antibacterial agent under clinical development and represents a novel class of bacterial therapy, that is, antibody–antibiotic conjugates. DSTA4637S is effective against the notorious persistent S. aureus bacteremia, a revelation of the abracadabra potential of antibiotic hybrid approaches.
Collapse
Affiliation(s)
- Abdrrahman Shemsu Surur
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| |
Collapse
|