1
|
Nie B, Sun G, Wang Z, Wang D. Access to [2.2]Paracyclophane-Fused N-Heterocycles via Palladium-Catalyzed C-H Activation and Cyclization of [2.2]Paracyclophaneacylhydrazones with Vinyl Azides. Org Lett 2025. [PMID: 40360255 DOI: 10.1021/acs.orglett.5c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
A novel protocol for the synthesis of [2.2]paracyclophane-fused N-heterocycles via palladium-catalyzed C-H activation and cyclization of [2.2]paracyclophaneacylhydrazones with vinyl azides has been developed. High regioselectivity control was realized by selective activation/functionalization of the C-H bond of highly rigid [2.2]paracyclophanes. A broad range of [2.2]paracyclophane-fused isoquinolinophane derivatives were prepared in sole regioselectivity with good functional group tolerance, which would be difficult to synthesize by other approaches in a one-step manner.
Collapse
Affiliation(s)
- Biao Nie
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Guodong Sun
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Zhongqing Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
2
|
O'Connell A, Haarr MB, Ryan J, Xu X, Martin A, Smith SN, Elghobashi-Meinhardt N, Fleming P, Maciá B, Caprio V, O'Reilly E. Transaminase-Triggered Cascades for the Synthesis and Dynamic Kinetic Resolution of Chiral N-Heterocycles. Angew Chem Int Ed Engl 2025; 64:e202422584. [PMID: 40062665 DOI: 10.1002/anie.202422584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
Biocatalysis is now a well-established branch of catalysis and the growing toolbox of natural, evolved and designer enzymes is enabling chemistry previously deemed inaccessible. However, most enzyme methodologies have been developed for functional group interconversions, such as the conversion of a ketone into an amine or alcohol, and do not result in the generation of significant 3D molecular complexity. The application of enzyme-triggered reaction cascade methodologies has the potential to transform simple substrates into complex sp3-rich molecules in one step. Herein, we describe a single-step biocatalytic route to high-value, complex indolizidine, and quinolizidine alkaloids, which relies on a transaminase-triggered double intramolecular aza-Michael reaction. This approach allows access to architecturally complex, natural-product-like N-heterocycles and reveals intriguing examples of diastereoselectivity in these enzyme-triggered reactions. Significantly, we demonstrate an elegant example of a biocatalytic cascade where the transaminase plays a dual role in generating complex N-heterocycles and where a retro-double intramolecular aza-Michael reaction mediates a dynamic kinetic resolution and enables the isolation of sp3-rich indolizidine diastereoisomers containing five stereocenters, as single isomers.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Marianne B Haarr
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - James Ryan
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
- Faculty of Science & Engineering, Division of Chemistry & Environmental Science, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Xingxing Xu
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Aoife Martin
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Simon N Smith
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | - Patricia Fleming
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Beatriz Maciá
- Faculty of Science & Engineering, Division of Chemistry & Environmental Science, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Vittorio Caprio
- Faculty of Science & Engineering, Division of Chemistry & Environmental Science, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin, 4, Ireland
| |
Collapse
|
3
|
Scarpi D, Capanni C, Visi S, Faggi C, Occhiato EG. Gold(I)-Catalyzed Rautenstrauch/Hetero-Diels-Alder/Retro-aza-Michael Cascade Reaction for the Synthesis of α-Hydrazineyl-2-cyclopentenones. J Org Chem 2024; 89:14108-14119. [PMID: 39267288 DOI: 10.1021/acs.joc.4c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
A one-pot synthesis of ring-fused, α-hydrazineyl-2-cyclopentenone derivatives is achieved by a gold(I)-catalyzed Rautenstrauch/hetero Diels-Alder/ring opening tandem reaction of suitable propargyl esters. By mixing the latter with a dialkylazodicarboxylate in the presence of a gold(I) catalyst, the 1,2-acyloxy migration/cyclization process (Rautenstrauch reaction) leads to cyclopentadienyl ester intermediates which are trapped by the heterodienophile present in situ. This provides strained intermediates which spontaneously undergo highly regioselective ring opening by a retro aza-Michael reaction promoted by the gold(I) catalyst, eventually yielding the target compounds. Six- and seven-membered ring-fused cyclopentenones bearing a pendant α-hydrazineyl moiety can be obtained in moderate to excellent yield (50-98%) by this approach, with a minimal erosion of the initial optical purity when using enantioenriched substrates.
Collapse
Affiliation(s)
- Dina Scarpi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino (FI), Italy
| | - Claudia Capanni
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino (FI), Italy
| | - Samuele Visi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino (FI), Italy
| | - Cristina Faggi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino (FI), Italy
| | - Ernesto G Occhiato
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
4
|
Sahoo AK, Rakshit A, Pan A, Dhara HN, Patel BK. Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Org Biomol Chem 2023; 21:1680-1691. [PMID: 36723155 DOI: 10.1039/d3ob00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A light-triggered synthesis of thio-functionalized pyridines is demonstrated using γ-ketodinitriles, thiols, and eosin Y as the photocatalyst. The reaction proceeds via the selective attack on one of the cyano groups by an in situ generated thiyl radical. The reaction also proceeds with nearly equal efficiency using direct sunlight. Large-scale synthesis and a few useful synthetic transformations of the substituted pyridines are also performed.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Bodala V, Podugu RL, Yettula K, Gollamudi P, Vidavalur S, Pulipaka S. Iron-Catalysed [3+3] Annulation of Oxime Acetates and Enaminones towards the Synthesis of Multi-Substituted Pyridines. Chem Asian J 2023; 18:e202201004. [PMID: 36461710 DOI: 10.1002/asia.202201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Indexed: 12/04/2022]
Abstract
A direct access to unsymmetrical and symmetrical multi-substituted pyridines has been accomplished via iron-catalysed [3+3] annulation of oxime acetates with enaminones. This protocol is featured by easily available starting materials, no requirement of expensive additives and ligands, operational simplicity, and good tolerance with diverse functional groups.
Collapse
Affiliation(s)
- Varaprasad Bodala
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | | | - Kumari Yettula
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Padmarao Gollamudi
- Department of Chemistry, Dr. B. R. Ambedkar University, Srikakulam, 532410, India
| | - Siddaiah Vidavalur
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Shyamala Pulipaka
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Li J, Jia X, Qiu J, Wang M, Chen J, Jing M, Xu Y, Zheng X, Dai H. Brønsted Acid-Catalyzed Synthesis of 1,2,5-Trisubstituted Imidazoles via a Multicomponent Reaction of Vinyl Azides with Aromatic Aldehydes and Aromatic Amines. J Org Chem 2022; 87:13945-13954. [PMID: 36223536 DOI: 10.1021/acs.joc.2c01624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and efficient approach to the synthesis of 1,2,5-trisubstituted imidazoles is developed via a multicomponent reaction under metal-free catalysis. Under Brønsted acid catalysis, the desired products can be obtained from readily available vinyl azides, aromatic aldehydes, and aromatic amines without generating any toxic waste. The convenient operations and high functional group compatibility indicate that this approach offers an attractive alternative method for the synthesis of imidazole derivatives.
Collapse
Affiliation(s)
- Jiuling Li
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Xinyu Jia
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Ju Qiu
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Min Wang
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Juan Chen
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Minghui Jing
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Yifu Xu
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Xinhua Zheng
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Hongmei Dai
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| |
Collapse
|
8
|
Fang Z, Zhang Y, Zhang Z, Song Q, Wu Y, Liu Z, Ning Y. Synthesis of gem-Disulfonyl Enamines via an Iminyl-Radical-Mediated Formal 1,3-HAT/Radical Coupling Cascade. Org Lett 2022; 24:6374-6379. [PMID: 36018352 DOI: 10.1021/acs.orglett.2c02277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report the first example of an iminyl-radical-mediated formal 1,3-HAT/radical coupling cascade of vinyl azides leading to the synthesis of tetrasubstituted gem-disulfonyl enamines. It is possible to employ a variety of vinyl azides and sulfinate salt coupling elements without sacrificing effectiveness and scalability. The combination of experimental studies and DFT calculations showed that this reaction proceeds via a radical addition/formal 1,3-HAT/radical coupling mechanism.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yujie Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Zhansong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qingming Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
9
|
Liu Z, Yu T, Li L, Fu W, Gan X, Chen H, Gao W, Tang B. S-triggered Schmidt-type rearrangement of vinyl azides to access N-aryl-(trifluoromethylsulfinyl)acetamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel S-induced Schmidt-type rearrangement of vinyl azides with CF3SO2Na is developed for synthesis of N-arylated 2-(trifluoromethylsulfinyl)acetamieds, which is mediated by triphosgene (BTC) under mild reaction conditions.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Tian Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Longhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Wei Fu
- Department of Pharmacy, Zibo Central Hospital, Zibo 255000, P. R. China
| | - Xingxing Gan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Huimin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
10
|
Nie B, Wu W, Jin C, Ren Q, Zhang J, Zhang Y, Jiang H. Pd(II)-Catalyzed Synthesis of Alicyclic[ b]-Fused Pyridines via C(sp 2)-H Activation of α,β-Unsaturated N-Acetyl Hydrazones with Vinyl Azides. J Org Chem 2021; 87:159-171. [PMID: 34931823 DOI: 10.1021/acs.joc.1c02086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new synthetic protocol for alicyclic[b]-fused pyridines with complete regioselectivity from α,β-unsaturated N-acetyl hydrazones and vinyl azides via Pd(II)-catalyzed C-H activation/cyclization/aromatization strategy has been described. A series of five- to eight-membered alicyclic[b]-fused pyridines were prepared in a one-step manner with wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Biao Nie
- Key Laboratory of Functional Molecular Engineering of Guang-dong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guang-dong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanfei Jin
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake PharmaCompany, Ltd., Dongguan 523871, China
| | - Qingyun Ren
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake PharmaCompany, Ltd., Dongguan 523871, China
| | - Ji Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake PharmaCompany, Ltd., Dongguan 523871, China
| | - Yingjun Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake PharmaCompany, Ltd., Dongguan 523871, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guang-dong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Yamashiro T, Abe T, Tanioka M, Kamino S, Sawada D. cis-3-Azido-2-methoxyindolines as safe and stable precursors to overcome the instability of fleeting 3-azidoindoles. Chem Commun (Camb) 2021; 57:13381-13384. [PMID: 34821884 DOI: 10.1039/d1cc06033c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Use of 3-azidoindoles in organic synthesis remains a difficult task owing to their instabilities. Herein, we report a general and concise approach for tackling this problem by using 3-azidoindole surrogates. The surrogates are bench-stable, presumably due to the observed intramolecular O-Nβ bonding. The resultant fleeting intermediates undergo capturing in situ to afford 3-substitued indoles through formal ipso-substitution of the azide group by nucleophiles. In these investigations, we found that the fleeting 3-azidoindoles show a C3-electrophilic character for the first time.
Collapse
Affiliation(s)
- Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| | - Masaru Tanioka
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 4648650, Japan
| | - Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 4648650, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| |
Collapse
|
12
|
Mao Y, Mao H, Xu J, Liu T, Liu B, Tan Q, Ding CH, Xu B. Synthesis of Poly-Substituted Pyridines via Noble-Metal-Free Cycloaddition of Ketones and Imines. Chem Asian J 2021; 16:3905-3908. [PMID: 34626095 DOI: 10.1002/asia.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Indexed: 11/12/2022]
Abstract
An eco-friendly and noble-metal-free formal [4+2] cycloaddition reaction was developed for the efficient synthesis of biologically interesting poly-substituted pyridines from easily available ketones and imines, whereby two sequential C-C bonds are formed. The given approach features a unique synthetic strategy of imines and ketones with wide substrate scope, good functional group tolerance, mild conditions and operational simplicity, which represents a more direct pathway to synthesize poly-substituted pyridines than traditional methods.
Collapse
Affiliation(s)
- Yeting Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hong Mao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaojiao Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianqi Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bingxin Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Qitao Tan
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Chang-Hua Ding
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
13
|
Wang J, Ba D, Yang M, Cheng G, Wang L. Regioselective Synthesis of 2,4-Diaryl-6-trifluoromethylated Pyridines through Copper-Catalyzed Cyclization of CF 3-Ynones and Vinyl Azides. J Org Chem 2021; 86:6423-6432. [PMID: 33905254 DOI: 10.1021/acs.joc.1c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel copper-catalyzed cyclization of readily available vinyl azides with CF3-ynones is steadily achieved under mild conditions to furnish the versatile 2,4-diaryl-6-trifluoromethylated pyridine products, which are of great interest in medicinal chemistry. The generation of the vinyl iminophosphorane intermediates from vinyl azides through the Staudinger-Meyer reaction ensures the subsequent 1,4-addition process with CF3-ynones in this transformation.
Collapse
Affiliation(s)
- Jixin Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Da Ba
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Mengqi Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P.R. China
| |
Collapse
|
14
|
Ge D, Luo XL, Tang X, Pang CB, Wang X, Chu XQ. Metal-free [3 + 2 + 1] annulation of allylic alcohols, ketones, and ammonium acetate: radical-involving synthesis of 2,3-diarylpyridine derivatives. Org Biomol Chem 2021; 19:2277-2283. [PMID: 33624664 DOI: 10.1039/d0ob02593c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A three-component [3 + 2 + 1] annulation strategy for the synthesis of biologically and pharmaceutically active 2,3-diarylpyridine derivatives by using a series of allylic alcohols, ketones, and ammonium acetate as substrates has been developed. The method proceeds efficiently under metal-free conditions, and the desired heterocycles could be obtained in a site-specific selectivity manner with good functional group tolerance.
Collapse
Affiliation(s)
- Danhua Ge
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xi Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Chao-Bin Pang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
15
|
Hu XQ, Hou YX, Liu ZK, Gao Y. Ruthenium-catalysed C–H/C–N bond activation: facile access to isoindolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01406k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile ruthenium-catalysed C–H/C–N bond activation and the subsequent annulation of readily available benzoic acids with in situ generated formaldimines are developed for the efficient synthesis of a wide range of biologically important isoindolinones.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
16
|
Liu B, Yang L, Li P, Wang F, Li X. Recent advances in transition metal-catalyzed olefinic C–H functionalization. Org Chem Front 2021. [DOI: 10.1039/d0qo01159b] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent advances during 2015–2020 in the field of metal-catalyzed olefinic C–H functionalization are organized according to the metal center of the catalyst, with an emphasis on the similarities and differences among different catalysts.
Collapse
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Lingyun Yang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Pengfei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Fen Wang
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University (SNNU)
- Xi'an 710062
- China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| |
Collapse
|