1
|
Yang S, Li H, Lv J, Wang L, Lu Y, Sun G, Wang X, Yin Q, Bi Y, Fang X. Modifications of terpenoids via inert aliphatic C-H bond heteroarylation with heteroarenes. Chem Commun (Camb) 2025. [PMID: 40370204 DOI: 10.1039/d5cc01708d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Here, we describe a method to modify commercially abundant terpenoids via inert aliphatic C-H bond heteroarylation directly with heteroarenes. The reaction is catalyzed by decatungstate anion under near-ultraviolet light irradiation. Furthermore, the inhibition effect of lipopolysaccharide (LPS)-induced nitric oxide (NO) production activity and cell proliferative inhibition in HUVEC and HCC1806 cells of the derivatives were evaluated. The heteroarylation could significantly result in changes in biological activity of terpenoids.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Huirong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Jiaxing Lv
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Lu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yongye Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Guangshun Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Xiangyin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Xianhe Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Yu H, Yu X, Li X, Kou W, Fang F, Zhang G. Enantioselective Photoredox- and Cu-Catalyzed Cyanoalkylation of Styrenes via Deoxygenation of Alkoxyl Radicals with Organophosphorus Compounds(III). Org Lett 2025; 27:1750-1756. [PMID: 39935183 DOI: 10.1021/acs.orglett.5c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The enantioselective cyanoalkylation of styrenes by a cooperative photoredox and copper catalysis system has been established, providing straightforward access to structurally diverse enantioenriched alkyl nitriles in good yields with excellent enantioselectivities under mild conditions via deoxygenation of alkoxyl radicals with organophosphorus compounds(III). In addition, the reaction features a wide substrate scope and good functional group tolerance, and the resultant alkyl nitriles could be easily converted into a series of chiral carboxylic acids, amides, esters, etc.
Collapse
Affiliation(s)
- Hongzhou Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xingyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Wanqing Kou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| |
Collapse
|
3
|
Zhuo J, Liu J, Zhou M, Ma L, Zhang M. Visible-Light-Induced C(sp 3)-H Activation for Minisci Alkylation of Pyrimidines Using CHCl 3 as Radical Source and Oxidant. J Org Chem 2025; 90:1400-1410. [PMID: 39807970 DOI: 10.1021/acs.joc.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp3)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp3)-H with dichloromethyl radical (·CHCl2), which was generated by photoreduction of chloroform.
Collapse
Affiliation(s)
- Jiatian Zhuo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jinshan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
5
|
Qi M, Xu AW. A visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction. Org Biomol Chem 2024; 22:2654-2661. [PMID: 38470359 DOI: 10.1039/d4ob00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.
Collapse
Affiliation(s)
- Ming Qi
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
6
|
He T, Liang C, Cheng H, Shi S, Huang S. Cathodically Coupled Electrolysis to Access Biheteroaryls. Org Lett 2024; 26:607-612. [PMID: 38206057 DOI: 10.1021/acs.orglett.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An electrochemical approach to biheteroaryls through the coupling of diverse N-heteroarenes with heteroaryl phosphonium salts is reported. The reaction features pH and redox-neutral conditions and excellent regioselectivity, as well as exogenous air or moisture tolerance. Additionally, a one-pot, two-step protocol can be established to realize formal C-H/C-H coupling of heteroarenes, thereby greatly expanding the substrate availability. The utility of this method is demonstrated through late-stage functionalization, the total synthesis of nitraridine, and antifungal activity studies.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Haoyuan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
8
|
Pan ZT, Shen LM, Dagnaw FW, Zhong JJ, Jian JX, Tong QX. Minisci reaction of heteroarenes and unactivated C(sp 3)-H alkanes via a photogenerated chlorine radical. Chem Commun (Camb) 2023; 59:1637-1640. [PMID: 36683529 DOI: 10.1039/d2cc06486c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here, an efficient Minisci reaction of heteroarenes and unactivated C(sp3)-H alkanes was achieved using an inexpensive FeCl3 as a photocatalyst. The photogenerated chlorine radical contributed to the HAT of C-H and subsequently initiated this reaction. Surprisingly, salt water and even seawater can act as a chlorine radical source, which provided an enlightening idea for future organic synthesis methods.
Collapse
Affiliation(s)
- Zi-Tong Pan
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Li-Miao Shen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Fentahun Wondu Dagnaw
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jing-Xin Jian
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
9
|
Miller AS, Alexanian EJ. Heteroarylation of unactivated C-H bonds suitable for late-stage functionalization. Chem Sci 2022; 13:11878-11882. [PMID: 36320922 PMCID: PMC9580477 DOI: 10.1039/d2sc04605a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
The late-stage introduction of diverse heterocycles onto complex small molecules enables efficient access to new medicinally relevant compounds. An attractive approach to such a transformation would utilize the ubiquitous aliphatic C-H bonds of a complex substrate. Herein, we report a system that enables direct C-H heteroarylation using a stable, commercially available O-alkenylhydroxamate with heterocyclic sulfone partners. The C-H heteroarylation proceeds efficiently with a range of aliphatic substrates and common heterocycles, and is a rare example of heteroarylation of strong C-H bonds. Importantly, the present approach is amenable to late-stage functionalization as the substrate is the limiting reagent in all cases.
Collapse
Affiliation(s)
- Austin S. Miller
- Department of Chemistry, The University of North Carolina at Chapel HillChapel HillNorth Carolina 27599USA
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel HillChapel HillNorth Carolina 27599USA
| |
Collapse
|
10
|
Kim C, Jeong J, Vellakkaran M, Hong S. Photocatalytic Decarboxylative Pyridylation of Carboxylic Acids Using In Situ-Generated Amidyl Radicals as Oxidants. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Mari Vellakkaran
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
11
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
12
|
Bhakat M, Khatua B, Guin J. Photocatalytic Aerobic Coupling of Azaarenes and Alkanes via Nontraditional Cl • Generation. Org Lett 2022; 24:5276-5280. [PMID: 35839079 DOI: 10.1021/acs.orglett.2c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herein, we demonstrate a nonconventional photocatalytic generation of Cl• from a common chlorinated solvent, dichloroethane, under aerobic conditions and its successful utilization toward the cross-dehydrogenative coupling of alkanes and azaarenes via hydrogen atom transfer with Cl•. The process is free from chloride salt, toxic oxidant, and UV light. It is applicable to a broad spectrum of substrates. The proposed mechanism involving Cl• is supported by a series of mechanistic investigations.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
13
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
14
|
Ruan S, Zhou C, Li L, Wang L, Liu J, Li P. Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Org Biomol Chem 2022; 20:3817-3822. [PMID: 35467683 DOI: 10.1039/d2ob00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel and efficient method for preparing exocyclic indan derivatives, with this method involving benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with simple cyclic alkanes under microwave irradiation, has been developed. The presented approach showed advantages of simple conditions, an environmentally friendly protocol, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Shuchen Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Laiqiang Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Anhui Laboratory of Clean Catalytic Engineering and College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China.
| |
Collapse
|
15
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202202649. [PMID: 35253971 PMCID: PMC9310868 DOI: 10.1002/anie.202202649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Oxidase‐type oxidation is an attractive strategy in organic synthesis due to the use of O2 as the terminal oxidant. Organic photocatalysis can effect metal‐free oxidase chemistry. Nevertheless, current methods are limited in reaction scope, possibly due to the lack of suitable photocatalysts. Here we report an isoquinoline‐derived diaryl ketone‐type photocatalyst, which has much enhanced absorption of blue and visible light compared to conventional diaryl ketones. This photocatalyst enables dehydrogenative cross‐coupling of heteroarenes with unactivated and activated alkanes as well as aldehydes using air as the oxidant. A wide range of heterocycles with various functional groups are suitable substrates. Transient absorption and excited‐state quenching experiments point to an unconventional mechanism that involves an excited state “self‐quenching” process to generate the N‐radical cation form of the sensitizer, which subsequently abstracts a hydrogen atom from the alkane substrate to yield a reactive alkyl radical.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
16
|
Jiang J, Song S, Guo J, Zhou J, Li J. Mechanically induced transition metal free C(sp)-H arylation of quinoxalin(on)es with diaryliodonium salts and piezoelectric BaTiO3. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang M, Zhang Y, Yang X, Sun P. Phenanthrenequinone (PQ) catalyzed cross-dehydrogenative coupling of alkanes with quinoxalin-2(1 H)-ones and simple N-heteroarenes under visible light irradiation. Org Biomol Chem 2022; 20:2467-2472. [PMID: 35262545 DOI: 10.1039/d2ob00278g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and convenient strategy to 3-alkylquinoxalin-2(1H)-ones and other alkyl N-heteroarenes via a photocatalyzed alkylation of quinoxalin-2(1H)-ones and other N-heterocycles with commercially available, low-cost alkanes under ambient conditions using phenanthrenequinone (PQ) as a photocatalyst was developed. This transformation has advantages of environment-friendly protocol, mild conditions, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China. .,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Xinyu Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
19
|
Zhang Q, Liu S, Lei J, Zhang Y, Meng C, Duan C, Jin Y. Iron-Catalyzed Photoredox Functionalization of Methane and Heavier Gaseous Alkanes: Scope, Kinetics, and Computational Studies. Org Lett 2022; 24:1901-1906. [DOI: 10.1021/acs.orglett.2c00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jinglan Lei
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
20
|
Wang Z, Zeng L, He C, Duan C. Metal-Organic Framework-Encapsulated Anthraquinone for Efficient Photocatalytic Hydrogen Atom Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7980-7989. [PMID: 35119261 DOI: 10.1021/acsami.1c22872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthraquinone (AQ) as an effective hydrogen atom transfer catalyst was limited in photocatalysis application due to the dimerization of reduced AQ. Sr-NDI@AQ, encapsulating AQ into the channel of Sr-NDI, paved a new way for solving the problem of dimerization of reduced AQ and improving the catalytic efficiency owing to the fast electron transfer from reduced AQ to the ligand through host-guest interaction. The structure of Sr-NDI@AQ was determined by single-crystal X-ray diffraction, and the value for distance and torsion angle between the ligand and AQ was calculated. The photochemical and electrochemical properties for Sr-NDI@AQ were characterized through a series of experiments. The coupling reaction between aldehyde and phenyl vinyl sulfone and photoacetalization reaction were carried out, displaying the improving catalytic efficiency of Sr-NDI@AQ compared to Sr-NDI and AQ. The reaction mechanisms were proposed through radical capture and electron paramagnetic resonance experiments.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Wang X, Shao X, Cao Z, Wu X, Zhu C. Metal‐free photoinduced deformylative Minisci‐type reaction. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Li J, Siang Tan S, Kyne SH, Wai Hong Chan P. Minisci‐Type Alkylation of
N
‐Heteroarenes by
N
‐(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacheng Li
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Suan Siang Tan
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Sara Helen Kyne
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- Department of Biological Environment Jiyang College of Zhejiang A&F University Hang Zhou Shi, Zhuji 311800, People's Republic of China
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
23
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
24
|
Yue B, Wu X, Zhu C. Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Ouyang YN, Yue X, Peng J, Zhu J, Shen Q, Li W. Organic-acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Org Biomol Chem 2022; 20:6619-6629. [DOI: 10.1039/d2ob01187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free method for the Minisci-type arylation of heterocycles with aryl acyl peroxides has been reported. This strategy enables the rapid and simple synthesis of a series of Minisci-type adducts...
Collapse
|
26
|
Wang X, Zhang Q, Liu S, Li M, Li H, Duan C, Jin Y. Visible Light-Induced Metal-Free Benzylation of Quinones via Cross Dehydrogenation Coupling Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Xu Y, Wu Z, Wu X, Zhu C. Transition-Metal Free Radical-Mediated C—H Bond Alkynylation and Allylation of Ethers, Aldehydes and Amides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Ciszewski ŁW, Gryko D. Pyridine N-oxides as HAT reagents for photochemical C–H functionalization of electron-deficient heteroarenes. Chem Commun (Camb) 2022; 58:10576-10579. [DOI: 10.1039/d2cc03772f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique reactivity of pyridine N-oxides as HAT reagents in light induced functionalization of electron-deficient heteroarenes is reported. EDA complex formation between the N-oxide and a substrate eliminates the need for a photocatalyst.
Collapse
Affiliation(s)
- Łukasz W. Ciszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
29
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
30
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
31
|
Wu C, Ying T, Yang X, Su W, Dushkin AV, Yu J. Mechanochemical Magnesium-Mediated Minisci C-H Alkylation of Pyrimidines with Alkyl Bromides and Chlorides. Org Lett 2021; 23:6423-6428. [PMID: 34351160 DOI: 10.1021/acs.orglett.1c02241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method to synthesize 4-alkylpyrimidines by the mechanochemical magnesium-mediated Minisci reaction of pyrimidine derivatives and alkyl halides has been reported. The reaction process operates with a broad substrate scope and excellent regioselectivity under mild conditions with no requirement of transition-metal catalysts, solvents, and inert gas protection. The practicality of this protocol has been demonstrated by the up-scale synthesis, mechanochemical product derivatization, and antimalarial drug pyrimethamine preparation.
Collapse
Affiliation(s)
- Chongyang Wu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Tao Ying
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Xinjie Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| | - Alexandr V Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
- Institute of Solid-State Chemistry and Mechanochemistry, Novosibirsk 630128, Russia
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou 310014, P.R. China
| |
Collapse
|
32
|
Wang Z, Zeng L, He C, Duan C. Photocatalytic C-H Activation with Alcohol as a Hydrogen Atom Transfer Agent in a 9-Fluorenone Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25898-25905. [PMID: 34043310 DOI: 10.1021/acsami.1c03098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen atom transfer (HAT) has become an attractive strategy for the activation of hydrocarbon feedstocks. Alcohols, as inexpensive and efficient hydrogen transfer reagents, have limited application in C-H functionalization due to the difficulty in the alkoxy radical acquisition. 9-Fluorenone moieties were incorporated into the metal-organic framework (MOF) as a photocatalyst; through the formation of hydrogen bonds between the carbonyl group of a ligand and alcohol, alkoxy radicals could be obtained by the visible-light-driven oxidation of 2,2,2-trichloroethanol via proton-coupled electron transfer (PCET). Effectively photocatalyzed intermolecular coupling reactions between phenyl vinyl sulfone and aldehyde or cyclic ether were realized through the HAT pathway. Compared to homogeneous catalysts, the heterogeneous MOF photocatalyst improved the catalytic efficiency and could be recycled at least five times. The microenvironment of the Zn-OFDC channel was beneficial for the formation of hydrogen bonds and stability of alkoxy radicals.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
33
|
Lee W, Jung S, Kim M, Hong S. Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. J Am Chem Soc 2021; 143:3003-3012. [DOI: 10.1021/jacs.1c00549] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
34
|
Li X, Yang H, Hu Z, Jin X, Zhang W, Guo X. Synthesis of 4(3 H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Ni H, Li Y, Deng J, Shi X, Pan Q. Visible-light-promoted/PIFA-mediated direct C–H acylation of quinoxalin-2(1 H)-ones with aldehydes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04805h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With aldehydes as the radical precursors under visible-light irradiation, a simple and mild PIFA-mediated C–H acylation reaction of quinoxalin-2(1H)-ones has been achieved.
Collapse
Affiliation(s)
- Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, 321007, People's Republic of China
| | - Yu Li
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
| | - Jieyi Deng
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
| | - Xingzi Shi
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
| | - Qinhai Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
36
|
Dong J, Liu Y, Wang Q. Recent Advances in Visible-Light-Mediated Minisci Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Cao Z, Zhang H, Wu X, Li Y, Zhu C. Radical heteroarylation of unactivated remote C(sp 3)–H bonds via intramolecular heteroaryl migration. Org Chem Front 2021. [DOI: 10.1039/d1qo01209f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Described herein is the radical-mediated heteroarylation of unactivated remote C(sp3)–H bonds via intramolecular heteroaryl migration.
Collapse
Affiliation(s)
- Zhu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Yahong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
38
|
Ma ZY, Li M, Guo LN, Liu L, Wang D, Duan XH. Sulfonamide as Photoinduced Hydrogen-Atom Transfer Catalyst for Regioselective Alkylation of C(sp 3)-H Bonds Adjacent to Heteroatoms. Org Lett 2020; 23:474-479. [PMID: 33373258 DOI: 10.1021/acs.orglett.0c03992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the DFT calculations, the sulfonamide was explored as an efficient hydrogen-atom transfer catalyst for the C(sp3)-H alkylation. The combination of a metal-free photoredox catalyst and a sulfonamide catalyst enables highly regioselective alkylation of the C-H bonds adjacent to heteroatoms, which features broad substrate scope and excellent functional group compatibility. Remarkably, the sulfonamide catalyst was also applicable to the C(sp3)-C(sp3) couplings through the merger of photoredox, nickel, and HAT catalysis.
Collapse
Affiliation(s)
- Zhi-Yong Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Mengyang Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Dongdong Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
39
|
Li X, Liu C, Guo S, Wang W, Zhang Y. PIFA‐Mediated Cross‐Dehydrogenative Coupling of
N
‐Heteroarenes with Cyclic Ethers: Ethanol as an Efficient Promoter. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chaoyang Liu
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shixun Guo
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wei Wang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
- Department of Pharmacology and Toxicology and BIO5 Institute University of Arizona Tucson AZ 85721-0207 USA
| | - Yongqiang Zhang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|