1
|
Zhang X, Wang D, Chang M, Xu X, Li W, Wang W. Pd(II)-Catalyzed tandem selective dehydrogenative [4+2] annulation of 2-methyl-1,3-cycloalkanediones with olefins. Chem Commun (Camb) 2024; 60:594-597. [PMID: 38099810 DOI: 10.1039/d3cc05191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A practical and effective palladium-catalyzed selective dehydrogenative [4+2] annulation of 2-methyl-1,3-cycloalkanediones with olefins was reported. The active 2-methylene-1,3-cycloalkanedione was in situ generated via Pd-catalyzed enolate oxidation processes, and it subsequently reacted with a wide variety of olefins to afford various polysubstituted dihydropyran derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Di Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wanya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
2
|
Chen Z, Li H, Liao Y, Wang M, Su W. Direct synthesis of alkylated 4-hydroxycoumarin derivatives via a cascade Cu-catalyzed dehydrogenation/conjugate addition sequence. Chem Commun (Camb) 2023; 59:6686-6689. [PMID: 37183637 DOI: 10.1039/d3cc01960h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An efficient approach for the direct synthesis of alkylated 4-hydroxycoumarin derivatives via a Cu-catalyzed cascade dehydrogenation/conjugate addition sequence starting from simple saturated ketones and 4-hydroxycoumarins has been developed. This protocol features excellent functional-group tolerance, easy scale-up, and a broad substrate scope including bioactive molecules. More importantly, a series of marketed drugs, such as warfarin, acenocoumarol, coumachlor, and coumafuryl, can be obtained by this method.
Collapse
Affiliation(s)
- Zhiliang Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yanjing Liao
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Mengqi Wang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
3
|
Wang T, Wang WB, Fu YM, Zhu CF, Cheng LJ, You YE, Wu X, Li YG. Asymmetric Double Oxidative [3 + 2] Cycloaddition for the Synthesis of CF 3-Containing Spiro[pyrrolidin-3,2'-oxindole]. Org Lett 2023; 25:3152-3156. [PMID: 37083397 DOI: 10.1021/acs.orglett.3c01083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An asymmetric double oxidative [3 + 2] cycloaddition is reported. Oxidation of 3-((2,2,2-trifluoroethyl)amino)indolin-2-ones and β-aryl-substituted aldehydes simultaneously and subsequent asymmetric cycloaddition in the presence of the chiral amino catalyst generated highly functionalized chiral CF3-containing spiro[pyrrolidin-3,2'-oxindole] with four contiguous stereocenters stereoselectively, which is characterized by directly constructing two C-C bonds from four C(sp3)-H bonds. This new method features mild conditions, broad substrate scope, and excellent functional group compatibility.
Collapse
Affiliation(s)
- Tao Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wen-Bin Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lan-Jun Cheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang-En You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Li H, Yin C, Liu S, Tu H, Lin P, Chen J, Su W. Multiple remote C(sp 3)-H functionalizations of aliphatic ketones via bimetallic Cu-Pd catalyzed successive dehydrogenation. Chem Sci 2022; 13:13843-13850. [PMID: 36544736 PMCID: PMC9710215 DOI: 10.1039/d2sc05370e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The dehydrogenation-triggered multiple C(sp3)-H functionalizations at remote positions γ, δ or ε, ζ to carbonyl groups of aliphatic ketones with aryl/alkenyl carboxylic acids as coupling partners have been achieved using a bimetallic Cu-Pd catalyst system. This reaction allows access to alkenylated isocoumarins and their derivatives in generally good yields with high functional group tolerance. The identification of bimetallic Cu-Pd synergistic catalysis for efficient successive dehydrogenation of aliphatic ketones, which overcomes the long-standing challenge posed by the successive dehydrogenation desaturation of terminally unsubstituted alkyl chains in aliphatic ketones, is essential to achieving this bimetallic Cu-Pd catalyzed dehydrogenation coupling reaction.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Chang Yin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Hua Tu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Jing Chen
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
5
|
Sharif A, Sun HR, Xu WL, Gou BB, Yang L, Li Y, Chen J, Zhou L. A Dehydrogenative Inverse Electron Demand Diels-Alder Reaction for the Synthesis of Functionalized Pyranones. Org Lett 2022; 24:4316-4321. [PMID: 35699407 DOI: 10.1021/acs.orglett.2c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient dehydrogenative inverse electron demand Diels-Alder reaction of isopropyl and prenyl benzene derivatives with electron-deficient dienes followed by decarboxylation has been reported for the first time. The much broader substrate scope of dienophiles and electron-deficient dienes led to biologically valuable pyranones in good to excellent yields.
Collapse
Affiliation(s)
- Atif Sharif
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Huai-Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Lan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Yu Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
6
|
Miller JL, Lawrence JMIA, Rodriguez Del Rey FO, Floreancig PE. Synthetic applications of hydride abstraction reactions by organic oxidants. Chem Soc Rev 2022; 51:5660-5690. [PMID: 35712818 DOI: 10.1039/d1cs01169c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon-hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Jean-Marc I A Lawrence
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | | | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
7
|
Wu X, Song S, Zhang X, Fu Y, Zhu C, Li Y. Copper‐Catalyzed Direct Oxidative α‐Alkoxylation of 4‐Isochromanones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Shuang‐Gui Song
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Xin Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yan‐Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Cheng‐Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - You‐Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| |
Collapse
|
8
|
Caravana AC, Nagasing B, Dhanju S, Reynolds RG, Weiss EA, Thomson RJ. Electrochemical and Photocatalytic Oxidative Coupling of Ketones via Silyl Bis-enol Ethers. J Org Chem 2021; 86:6600-6611. [PMID: 33881862 PMCID: PMC11034822 DOI: 10.1021/acs.joc.1c00384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diastereoselective oxidative coupling of ketones through a silyl bis-enol ether intermediate by anodic and photocatalytic oxidation is reported. These methods provide several 1,4-diketones in good yields without the need for stoichiometric metal oxidants. The strategic use of a silicon tether enables the coupling of both aromatic and aliphatic ketones as well as the synthesis of quaternary centers. Cyclic voltammetry is used to gain insight into the oxidation events of the reaction.
Collapse
Affiliation(s)
- Aidan C Caravana
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin Nagasing
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sandeep Dhanju
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rebekah G Reynolds
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Ding R, Li Y, Chang Y, Liu Y, Yu J, Lv Y, Hu J. Metal-Free Direct C-H Functionalization of Quinoxalin-2(1 H)-Ones to Produce 3-Vinylated Quinoxalin-2(1 H)-Ones in the Presence of Alkenes. Front Chem 2021; 9:672051. [PMID: 33996765 PMCID: PMC8119786 DOI: 10.3389/fchem.2021.672051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
A novel and efficient C 3-H vinylation reaction with quinoxalin-2(1H)-one as the substrate, in the presence of alkenes, under metal-free conditions, is reported herein. The reaction leads to the formation of new carbon-carbon bonds that exhibit moderate to good reactivities. The vinylation of quinoxalin-2(1H)-ones, in the presence of alkenes, is an attractive process that can be potentially utilized to produce biologically active 3-vinylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanna Lv
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinxing Hu
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|