1
|
Cheng S, Liang Y, Zhang T, Chen M, Li J, Zhang X, Luo S, Zhu Q. Regiospecific 2,3-Dialkylindole Synthesis Enabled by Alkylpalladium 1,2-Migration to In Situ Formed Aldimine. Angew Chem Int Ed Engl 2025:e202501582. [PMID: 40133220 DOI: 10.1002/anie.202501582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
2,3-Dialkylindoles play crucial roles in natural products and pharmaceuticals, but the step-efficient and regioselective construction of such privileged structures remains a long-standing challenge. Here, we report a regiospecific non-Fischer indole synthesis through chemoselective 1,2-migratory addition of alkylpalladium to an aldimine intermediate, formed in situ through a palladium hydride-triggered sequential isocyanide and intramolecular olefin insertion. This unprecedented 1,2-migratory addition leads to formal C═C bond cleavage and isocyano carbon insertion between the two sp2 carbons, offering a novel approach to specific 2,3-dialkyl substituted N─H free indoles from readily available alkyl substituted 1-isocyano-2-vinylbenzenes.
Collapse
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yingxiang Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Meiling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Xiaohan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
2
|
Yao T, Liu W, Hu H, Qin X. Synthesis of continuously substituted quinolines from o-alkenyl aromatic isocyanides by palladium-catalyzed intramolecular imidoylative 6- endo cyclization. Chem Commun (Camb) 2025; 61:1399-1402. [PMID: 39711246 DOI: 10.1039/d4cc05461j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An efficient synthesis of continuously substituted quinoline derivatives via palladium-catalyzed intramolecular 6-endo imidoylative cyclization of o-alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.
Collapse
Affiliation(s)
- Tuanli Yao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Wei Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hanfu Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
- Military Medical Innovation Center, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Xi ZW, He Y, Liu LQ, Wang YC, Zeng HY. Three-Component Domino Reaction of Thioamide, Isonitriles, and Water: Selective Synthesis of 1,2,4-Thiadiazolidin-3-ones and ( E)- N-(1,2-Diamino-2-thioxoethylidene)benzamides. J Org Chem 2024; 89:8315-8325. [PMID: 36693028 DOI: 10.1021/acs.joc.2c01969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-component domino reaction of thioamides, benzyl isocyanide, and water in the presence of a catalytic amount of both Pd(dppf)Cl2 and Cu(OAc)2 afforded novel 1,2,4-thiadiazolidin-3-one cyclic compounds, whereas the same reaction with tertiary alkylisonitriles in the presence of rare earth metal salt [La(OTf)3] resulted in (E)-N-(1,2-diamino-2-thioxoethylidene)benzamide open-chain products. This divergent reaction enabled the one-pot construction of five (N-S, C-S, C-O, and two C-N) or four (C-S, C-N, C-O, and C-C) new chemical bonds. Mechanism studies indicate that the oxygen atom of the product was derived from H2O.
Collapse
Affiliation(s)
- Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Yan He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Li-Qiu Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Hui-Ying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Fan H, Li A, Li J, Du Z, Wang L, Zhou X, He P, Ren Z. Construction of Tetrazole Derivatives via Sequential Ugi‐N
3
/Pd‐Catalyzed Isocyanide Insertion Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hao‐Jie Fan
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - A‐Ting Li
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Jun Li
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Zi‐Qi Du
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Long Wang
- College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. of China
- Hubei Three Gorges Laboratory Yichang Hubei 443007 P. R. of China
| | - Xian‐Min Zhou
- Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441053 P. R. of China
| | - Ping He
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Zhi‐Lin Ren
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
- College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. of China
| |
Collapse
|
6
|
Yu T, Li ZQ, Li J, Cheng S, Xu J, Huang J, Zhong YW, Luo S, Zhu Q. Palladium-Catalyzed Modular Synthesis of Enantioenriched Pyridohelicenes through Double Imidoylative Cyclization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences CAS, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences CAS, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
7
|
Maurya RK, Sharma D, Kumari S, Chatterjee R, Khatravath M, Dandela R. Recent Advances in Transition Metal‐Catalyzed Domino‐Cyclization Strategies for Functionalized Heterocyclic/Carbocyclic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rohit Kumar Maurya
- Rohit Kumar Maurya Suruchi Kumari Mahender Khatravath Department of Chemistry, Central university of South SH-7, Panchanpur Road Karhara Fatehpur Gaya Bihar 824236 India
| | - Deepika Sharma
- Deepika Sharma Rambabu Dandela Rana Chatterjee Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013 India
| | - Suruchi Kumari
- Rohit Kumar Maurya Suruchi Kumari Mahender Khatravath Department of Chemistry, Central university of South SH-7, Panchanpur Road Karhara Fatehpur Gaya Bihar 824236 India
| | - Rana Chatterjee
- Deepika Sharma Rambabu Dandela Rana Chatterjee Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013 India
| | - Mahender Khatravath
- Rohit Kumar Maurya Suruchi Kumari Mahender Khatravath Department of Chemistry, Central university of South SH-7, Panchanpur Road Karhara Fatehpur Gaya Bihar 824236 India
| | - Rambabu Dandela
- Deepika Sharma Rambabu Dandela Rana Chatterjee Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013 India
| |
Collapse
|
8
|
Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. One-Pot Synthesis of Multifunctionalized 1-Pyrrolines from 2-Alkyl-2 H-azirines and Diazocarbonyl Compounds. J Org Chem 2022; 87:8835-8840. [PMID: 35732058 DOI: 10.1021/acs.joc.2c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel strategy for the synthesis of 1-pyrrolines based on formal [4 + 1] annulation of 2-alkyl-2H-azirines with diazocarbonyl compounds has been developed. This one-pot approach includes the Rh(II)-catalyzed formation of 4-alkyl-2-azabuta-1,3-dienes, followed by the DBU-promoted cyclization, and features a good substrate tolerance. The 1-pyrrolines containing an ester group at the C3 were prepared in a three-step one-pot procedure starting from 5-alkoxyisoxazoles. The cyclization of 2-azabutadienes to 1-pyrrolines most likely proceeds via the 6π electrocyclization of a conjugated NH-azomethine ylide.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
9
|
Hu W, Wang X, Peng Y, Luo S, Zhao J, Zhu Q. Synthesis of 7-Arylthiomethyl Dibenzo[ b, d]azepines through Imidoylative Heck Cyclization and CPA-Catalyzed Thio-Michael Addition/Enantioselective Protonation. Org Lett 2022; 24:3642-3646. [PMID: 35549333 DOI: 10.1021/acs.orglett.2c01217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A chiral phosphoric acid-catalyzed thio-Michael addition/enantioselective protonation has been developed for the first time. The reaction applies 7-methylene-6-aryl-7H-dibenzo[b,d]azepines, products of Pd-catalyzed imidoylative Heck cyclization, as Michael acceptors in reactions with a wide range of aryl thiols. Diversified 7-[(arylthio)methyl]-7H-dibenzo[b,d]azepines bearing a benzylic stereocenter and a thermodynamically regulated biaryl axis were produced with good to excellent enantioselectivity and 14-25:1 diastereoisomeric ratios.
Collapse
Affiliation(s)
- Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xilong Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yan Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528400, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
10
|
Ge S, Zhu YM, Xu XP, Ji SJ. [4 + 1 + 1] Tandem Cyclization Reaction Involving Isocyanides: Access to 2-(Trifluoromethyl)quinazolin-4(3 H)-imines. J Org Chem 2022; 87:3422-3432. [PMID: 35133158 DOI: 10.1021/acs.joc.1c03008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed three-component reaction of isocyanides, 2,2,2-trifluoro-N-(2-iodophenyl)acetimidoyl chlorides, and amines for the one-pot synthesis of 2-(trifluoromethyl)quinazolin-4(3H)-imines was described. The protocol features a wide substrate scope, high efficiency, and readily available raw materials.
Collapse
Affiliation(s)
- Shen Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.,Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Cheng S, Luo Y, Yu T, Li J, Gan C, Luo S, Zhu Q. Palladium-Catalyzed Four-Component Cascade Imidoyl-Carbamoylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
12
|
A Facile Synthesis of Indole Derivatives by a Palladium‐Catalyzed Process Initiated from Ugi Adducts and their Antifungal Activities. ChemistrySelect 2021. [DOI: 10.1002/slct.202104070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Chen S, Oliva M, Van Meervelt L, Van der Eycken EV, Sharma UK. Palladium‐Catalyzed Domino Synthesis of 2,3‐Difunctionalized Indoles
via
Migratory Insertion of Isocyanides in Batch and Continuous Flow. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Su Chen
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture Department of Chemistry KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
14
|
Teng F, Yu T, Peng Y, Hu W, Hu H, He Y, Luo S, Zhu Q. Palladium-Catalyzed Atroposelective Coupling–Cyclization of 2-Isocyanobenzamides to Construct Axially Chiral 2-Aryl- and 2,3-Diarylquinazolinones. J Am Chem Soc 2021; 143:2722-2728. [DOI: 10.1021/jacs.1c00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yan Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
15
|
Wang J, Li D, Li J, Zhu Q. Advances in palladium-catalysed imidoylative cyclization of functionalized isocyanides for the construction of N-heterocycles. Org Biomol Chem 2021; 19:6730-6745. [PMID: 34259697 DOI: 10.1039/d1ob00864a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palladium-catalysed isocyanide insertion reactions have witnessed great progress in recent years. In particular, imidoylative cyclization of functionalized isocyanides was successfully developed by taking advantage of the adjustable substituents on the isocyano group, opening a new avenue to access a variety of nitrogen-containing heterocycles. In this review article, we summarize the advances of functionalized isocyanide insertion reactions and highlight the breakthroughs of enantioselective palladium catalysed imidoylation reactions by using this strategy. Additionally, copper-catalysed cyclization reactions of functionalized isocyanides are briefly discussed.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and University of Chinese Academy of Sciences, Beijing 100049, China and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and University of Chinese Academy of Sciences, Beijing 100049, China and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|