1
|
Rai A, Das U. Reaction of 4-(Alkynyloxy)cyclohexa-2,5-dienones with Dimethyl Sulfoxide: A Catalyst-Free Formation of 6/5/3-Fused Tricyclic Enones. J Org Chem 2025; 90:653-657. [PMID: 39711318 DOI: 10.1021/acs.joc.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
6/5/3-Fused tricyclic enones were obtained when 4-(alkynyloxy)cyclohexa-2,5-dienones were treated with DMSO at 150 °C. The reaction proceeded via a four-membered oxathietene intermediate. The protocol developed is atom economical, has a broad substrate scope, and is amenable to gram-scale synthesis. The products obtained are susceptible to further synthetic transformations.
Collapse
Affiliation(s)
- Archana Rai
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Das
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Navaneetha N, Munakala A, Chegondi R. Ag(I)-catalyzed diastereoselective oxidative cyclopropanation of prochiral alkyne-tethered 1,3-dicarbonitriles. Chem Commun (Camb) 2024; 60:10708-10711. [PMID: 39239712 DOI: 10.1039/d4cc03697b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we developed a highly diastereoselective silver-catalyzed intramolecular cyclopropanation of prochiral alkyne-tethered 1,3-dicarbonitriles using perchloric acid as an effective oxidizing agent. This method facilitates the construction of densely functionalized complex [6.6.5.3] frameworks having three all-carbon quaternary stereocenters in high yields. The significance of the reaction was demonstrated by a gram-scale reaction and post-synthetic modifications of the product.
Collapse
Affiliation(s)
- N Navaneetha
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Patil VB, Raghu Ramudu G, Chegondi R. Cascade Oxypalladation/1,3-Palladium Shift to Access Cyclopentene-Fused Isocoumarins. Org Lett 2024; 26:6353-6358. [PMID: 39041835 DOI: 10.1021/acs.orglett.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Fused isocoumarins are frequently found in several natural products and pharmaceuticals. Herein, a cascade annulation of 2-alkynylbenzoate-tethered cyclic 1,3-diones via sequential trans-oxypalladation, carbonyl insertion, 1,3-Pd shift, and β-hydride elimination is reported. This method provides efficient access to highly diastereoselective tetracyclic cyclopentene-fused isocoumarins containing two contiguous quaternary stereocenters. A plausible reaction mechanism is proposed on the basis of mechanistic studies, including deuterium labeling experiments. Studies toward enantioselective synthesis using a chiral Bpy ligand gave encouraging initial results.
Collapse
Affiliation(s)
- Vaibhav B Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Raghu Ramudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Iwakiri Y, Kishimoto R, Sakaguchi K, Nishimura T. Synthesis of Tricyclic Fused 6-5-4 Carbocycles via Acid-Promoted Cascade Intramolecular Cyclization of Allenylsilane-Tethered Cyclohexadienones. Org Lett 2024. [PMID: 38607926 DOI: 10.1021/acs.orglett.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The reaction of 2,5-cyclohexadienones with methylene-tethered allenylsilane in the presence of Lewis or Brønsted acids leads to a cascade of intramolecular cyclization, yielding stereoselective tricyclic fused 6-5-4 carbocycles featuring a silyl-methylenecyclobutane ring. This transformation is notable for the diastereoselective asymmetric desymmetrization of prochiral dienones, attributed to the axial chirality of allene.
Collapse
Affiliation(s)
- Yuka Iwakiri
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Ryoma Kishimoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Kazuhiko Sakaguchi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Magham LR, Thopate SB, Samad A, Chegondi R. Enantioselective Desymmetrization Triggered by Iminium-Enamine Activation: Access to Complex Cyclohepta[b]indoles. Chemistry 2023; 29:e202203435. [PMID: 36530064 DOI: 10.1002/chem.202203435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The expeditious construction of complex molecules having multiple stereocentres is highly desirable in organic chemistry. In the present communication, we report the development of an organocatalytic asymmetric desymmetrization of prochiral enal-tethered cyclohexadienones via the C3-selective Friedel-Crafts alkylation of indoles triggered by LUMO-lowering iminium activation/HOMO-raising enamine activation. The reaction provides access to bicyclic enones, which further undergo acid-mediated intramolecular annulation from C2-position to afford highly strained cyclohepta[b]indoles with five contiguous stereocentres and three new C-C bonds in excellent enantioselectivity and diastereoselectivity.
Collapse
Affiliation(s)
- Lakshmi Revati Magham
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Satish B Thopate
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Abdus Samad
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
6
|
Chen G, Shi Y, Tian W, Xie H, Yan Z, Yu J. Demethylaromatization of cyclohexadienones by iodotriphenylphosphonium iodide. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Chen X, Luo Z, Chen Y, Zhang Y. Silver(I)-Catalyzed Oxidative Cyclopropanation of 1,6-Enynes: Synthesis of 3-Aza-bicyclo[3.1.0]hexane Derivatives. Org Lett 2022; 24:9200-9204. [PMID: 36484531 DOI: 10.1021/acs.orglett.2c03619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple Ag(I)-catalyzed oxidative cyclopropanation of heteroatom-tethered 1,6-enynes for the establishment of valuable functionalized 3-aza-bicyclo[3.1.0]hexane is presented, which allows the formation of multiple chemical bonds in one step under 20 mol % silver(I) catalysts and air conditions. This approach is highly atom economical, easy to perform, and free of external oxidants and features good to excellent yields and gram-scale synthesis. The preliminary study showed that an uncommon silver carbenoid intermediate might be involved in this process.
Collapse
Affiliation(s)
- Xia Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
8
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
9
|
Fan Z, Ni SF, Pang JY, Guo LT, Yang H, Li K, Ma C, Liu JK, Wu B, Yang JM. Cu(I)-Catalyzed Cross-Coupling Rearrangements of Terminal Alkynes with Tropylium Tetrafluoroborate: Facile Access to Barbaralyl-Substituted Allenyl Acid Esters and 7-Alkynyl Cycloheptatrienes. J Org Chem 2022; 87:3066-3078. [DOI: 10.1021/acs.joc.1c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhe Fan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Jin-Yu Pang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Ting Guo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hao Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ke Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
10
|
Munakala A, Nallamilli T, Nanubolu JB, Chegondi R. Steric- and Electronic-Controlled Intramolecular [2 + 2]-Cycloaddition of Cyclohexadienone-Containing 1,7-Enynes. Org Lett 2022; 24:892-896. [PMID: 35023756 DOI: 10.1021/acs.orglett.1c04232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we have developed the silver-catalyzed electronic- and steric-controlled intramolecular formal [2 + 2]-cycloaddition of alkyne-tethered cyclohexadienones. Substrates with electron-rich alkynes and a less hindered quaternary carbon center afford tricyclic fused cyclobutenes through 1,7-enyne cyclization. In contrast, the formation of dihydrofurans was observed from electron-deficient alkynes via proton abstraction/C-O bond cleavage. The synthetic potential of this method was also broadened with a gram-scale reaction and various transformations on cyclobutene.
Collapse
Affiliation(s)
- Anandarao Munakala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tarun Nallamilli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Shi C, Zhou JJ, Hong P, Zhu BH, Hong FL, Qian PC, Sun Q, Lu X, Ye LW. Efficient synthesis of tetracyclic γ-lactams via gold-catalyzed oxidative cyclization of alkenyl diynes. Org Chem Front 2022. [DOI: 10.1039/d2qo00123c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold-catalyzed cascade cyclization of alkenyl diynes involving alkyne oxidation, carbene-alkyne metathesis and cyclopropanation has been developed, furnishing a series of tetracyclic γ-lactams bearing one quaternary carbon center and...
Collapse
|
12
|
Jadhav SB, Maurya S, Navaneetha N, Chegondi R. Rh(III)-catalyzed diastereoselective cascade annulation of enone-tethered cyclohexadienones via C(sp 2)-H bond activation. Chem Commun (Camb) 2021; 57:13598-13601. [PMID: 34853840 DOI: 10.1039/d1cc05941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report highly diastereoselective arylative cyclization of enone-tethered cyclohexadienones via Rh(III)-catalyzed C-H activation of N-methoxybenzamides. This reaction proceeds through the formation of a five-membered rhodacycle followed by bis-Michael cascade annulation to access functionalized bicyclic scaffolds with four contiguous stereocenters with a broad substrate scope. These products have excellent functional handles, allowing further synthetic transformation to increase the structural complexity. Furthermore, mechanistic studies of arylative cyclization and a gram-scale experiment are also presented.
Collapse
Affiliation(s)
- Sandip B Jadhav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N Navaneetha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Liu D, Shi B, Jiang H, Cheng Y, Xiao WJ, Lu LQ. Synthesis of hydroindoles via desymmetric [3+2] cycloadditions of para-quinamines with photogenerated ketenes. Chem Commun (Camb) 2021; 57:8496-8499. [PMID: 34351325 DOI: 10.1039/d1cc03352b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A DBU-catalyzed desymmetric [3+2] cycloaddition between para-quinamines and photogenerated ketenes was developed for the first time. Under the irradiation of low-energy blue LEDs, a variety of hydroindoles bearing all-carbon quaternary centers were produced with good reaction efficiency and complete diastereoselectivity (34 examples, 45-99% yields and >95 : 5 dr). This protocol represents a new approach to synthetically significant hydroindoles, and features broad substrate scope, high functional group compatibility and mild reaction conditions.
Collapse
Affiliation(s)
- Dan Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | | | | | | | | | | |
Collapse
|
14
|
Wei Y, Jiang X, Gao H, Bian M, Huang Y, Zhou Z, Yi W. Rhodium(III)‐Catalyzed Cascade C−H Coupling/C‐Terminus Michael Addition of
N
‐Phenoxy Amides with 1,6‐Enynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Xinlin Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Mengyao Bian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
15
|
Munakala A, Phanindrudu M, Chegondi R. Transition-Metal Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones. CHEM REC 2021; 21:3689-3726. [PMID: 34145713 DOI: 10.1002/tcr.202100136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Patil VB, Nanubolu JB, Chegondi R. Design, synthesis and application of spiro[4.5]cyclohexadienones via one-pot sequential p-hydroxybenzylation/oxidative dearomatization. Chem Commun (Camb) 2021; 57:5574-5577. [PMID: 33969843 DOI: 10.1039/d1cc01752g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot sequential p-hydroxybenzylation/oxidative dearomatization/spiroannulation has been designed for the efficient construction of tetrahydrofuran containing spiro-cyclohexadienones. This reaction proceeds through the p-hydroxybenzylation of 1,3-diketones with p-hydroxybenzyl alcohol via quinone methide formation followed by oxidative dearomatization/spiroannulation with suitable alcohols. The Friedel-Crafts alkylation of spiro[4.5]cyclohexadienones with indoles provided a broad array of highly diastereoselective C-3 alkylated spirocycles and cyclohepta[b]indoles depending upon the ring size of the fused cyclic ketones.
Collapse
Affiliation(s)
- Vaibhav B Patil
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. / and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India and Department of Analytical and Structural chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. / and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Li Z, Qiu X, Meng N, Liu Z. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Munakala A, Chegondi R. Silver(I)-Catalyzed Enyne Cyclization/Aromatization of Alkyne-Tethered Cyclohexadienones to Access Meta-Substituted Phenols. Org Lett 2020; 23:317-323. [PMID: 33381974 DOI: 10.1021/acs.orglett.0c03819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein we report a highly regioselective silver(I)-catalyzed intramolecular annulation of alkyne-tethered cyclohexadienones to access meta-substituted phenols with enone functionality, which are difficult to synthesize from conventional methods. The reaction proceeds via intramolecular 1,6-enyne cyclization followed by aromatization and subsequent oxetene ring rearrangement. This strategy has also been compatible with a wide range of C-tethered cyclohexadienones to afford indanes in high yields. The unique functionality of products allows further transformations to expand the diversity.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Gollapelli KK, Patil VB, Vinaykumar A, Chegondi R. Rh(i)-catalyzed stereoselective desymmetrization of prochiral cyclohexadienones via highly exo-selective Huisgen-type [3 + 2] cycloaddition. Chem Sci 2020; 12:1544-1550. [PMID: 34163917 PMCID: PMC8179110 DOI: 10.1039/d0sc05543c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed. This method enables convergent construction of complex epoxy-bridged polycyclic ring systems with five contiguous stereocenters with excellent exo-selectivity and broad substrate scope. The highly atom-economical process involves 6-endo-dig cyclization of carbonyl oxygen onto an activated alkyne resulting in a highly reactive metal–benzopyrylium intermediate, which readily undergoes intramolecular [3 + 2] annulation/hydration. Asymmetric induction is also achieved for the first time in Rh(i)-catalyzed 1,3-dipolar cycloaddition using an easily accessible chiral diene as the ligand. A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed.![]()
Collapse
Affiliation(s)
- Krishna Kumar Gollapelli
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Vaibhav B Patil
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Allam Vinaykumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| |
Collapse
|