1
|
Li L, Ding L, Zhang X, Zhang C, Wang M, Gu Z. Catalytic Atroposelective aza-Grob Fragmentation: An Approach toward Axially Chiral Biarylnitriles. J Am Chem Soc 2025; 147:17209-17216. [PMID: 40327742 DOI: 10.1021/jacs.5c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Grob fragmentation is a powerful synthetic tool for cleaving C-C bonds, which was particularly useful in the construction of seven- to nine-membered carbocycles or heterocycles. This reaction typically breaks one C-C bond and one C-X bond and forms two unsaturated functional groups. As no stereogenic centers are generated, catalytic asymmetric Grob fragmentation has remained unexplored. In this study, we have successfully developed a catalytic asymmetric aza-Grob fragmentation of α-keto oxime esters, achieving atroposelective C-C bond cleavage to construct axially chiral biarylnitriles. Single-crystal X-ray diffraction analysis of oxime esters elucidated the structure-reactivity relationship, highlighting the role of torsional strain. These studies also revealed the unique role of the 2-phenyl benzoyl group in controlling the substrate conformation, tuning reactivity, and stereoselectivity. The 1H NMR titration experiments provided brief insights into the activation mode of the catalyst with the substrate, suggesting a multi-hydrogen-bonding interaction model.
Collapse
Affiliation(s)
- Lin Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chengnuo Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
2
|
Kim SY, Lim HN. Deacetylative cyanation: a cyanide-free route to thiocyanates and cyanamides. Chem Commun (Camb) 2024; 60:13542-13545. [PMID: 39474757 DOI: 10.1039/d4cc04539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The use of N-hydroxy-2-oxopropanimidoyl chloride as a latent cyanide transfer agent is reported. This easy-to-handle, scalable, and operationally simple agent can be installed on common nucleophiles, including thiols and secondary amines, affording synthetically useful thiocyanates and cyanamides. This method complements conventional approaches that use poisonous and volatile cyanogen halides.
Collapse
Affiliation(s)
- Si Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
3
|
Mazzarella D, Stanić J, Bernús M, Mehdi AS, Henderson CJ, Boutureira O, Noël T. In-Flow Generation of Thionyl Fluoride (SOF 2) Enables the Rapid and Efficient Synthesis of Acyl Fluorides from Carboxylic Acids. JACS AU 2024; 4:2989-2994. [PMID: 39211602 PMCID: PMC11350575 DOI: 10.1021/jacsau.4c00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Herein, we report an approach for generating thionyl fluoride (SOF2) from the commodity chemicals thionyl chloride (SOCl2) and potassium fluoride (KF). The methodology relies on a microfluidic device that can efficiently produce and dose this toxic gaseous reagent under extremely mild and safe conditions. Subsequently, the in situ-generated thionyl fluoride is reacted with an array of structurally and electronically differing carboxylic acids, leading to the direct and efficient synthesis of highly sought-after acyl fluorides. Importantly, our investigation also highlights the inherent modularity of this flow-based platform. We demonstrate the adaptability of this approach by not only synthesizing acyl fluorides but also directly converting carboxylic acids into a diverse array of valuable compounds such as esters, thioesters, amides, and ketones. This versatility showcases the potential of this approach for a wide range of synthetic applications, underscoring its significance in the realm of chemical synthesis.
Collapse
Affiliation(s)
- Daniele Mazzarella
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Jelena Stanić
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miguel Bernús
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Arad Seyed Mehdi
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Cassandra J. Henderson
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Omar Boutureira
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Timothy Noël
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kim SY, Lim HN. Methyl Pyruvate Oxime as a Carbonyl Synthon: Synthesis of Ureas, Carbamates, Thiocarbamates, and Anilides. Org Lett 2024; 26:3850-3854. [PMID: 38683648 DOI: 10.1021/acs.orglett.4c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A new strategy for the synthesis of unsymmetrical ureas, carbamates, thiocarbamates, and anilides was developed with methyl pyruvate oxime as the carbonyl synthon. The intrinsic reactivity of the reagent enabled consecutive disubstitution involving direct amidation and one-pot deoximative substitution with various nucleophiles. The utility of the method was demonstrated with the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
5
|
Lee SE, Kim Y, Lee YH, Lim HN. C-C Bond Cleavage-Induced C- to N-Acyl Transfer for Synthesis of Amides. Org Lett 2024; 26:3646-3651. [PMID: 38656111 DOI: 10.1021/acs.orglett.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A new approach for the preparation of amides was developed using C-C bond cleavage that initiates C- to N-acyl transfer, employing activated ketones as acylation reagents and amine nucleophiles. The reaction was operational under the coupling reagent system that is commonly utilized for peptide bond formations. The method enables practical preparation of amides using linear and cyclic ketone substrates under mild conditions.
Collapse
Affiliation(s)
- Su Eun Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Youngsoo Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yong Ho Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
6
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Bak JM, Song M, Shin I, Lim HN. A deconstruction-reconstruction strategy to access 1-naphthol derivatives: application to the synthesis of aristolactam scaffolds. Org Biomol Chem 2023; 21:8936-8941. [PMID: 37916683 DOI: 10.1039/d3ob01603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A deconstruction-reconstruction strategy for the synthesis of multisubstituted polycyclic aromatic hydrocarbons (PAHs) is delineated herein. The deconstruction step enables the synthesis of o-cyanomethylaroyl fluorides that are bifunctional substrates holding both a pro-nucleophile and an electrophile. The construction step involves a formal [4 + 2] benzannulation using o-cyanomethylaroyl fluorides and active methylenes. The utility of this synthetic method is also demonstrated by the synthesis of a tetracyclic aristolactam derivative.
Collapse
Affiliation(s)
- Jeong Min Bak
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Moonyeong Song
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Inji Shin
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Lee CY, Lee SE, Lim HN. A Strategic Synthesis of Fluoroethers via Ring-Opening Fluorinative Beckmann Fragmentation. Org Lett 2023; 25:6534-6538. [PMID: 37616502 DOI: 10.1021/acs.orglett.3c02343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
An SN1-type fluorination method for monofluoroethers is developed. The key to this reaction is fluorinative C-C bond cleavage that is driven by oxygen-assisted Beckmann fragmentation. To enable this transformation, cyclic α-aryloxyoximes derived from 3-coumaranone and 1-indanones were investigated as substrates, using N,N-diethylaminosulfur trifluoride (DAST) as a dual-role reagent of an oxime activator and fluoride donor. This method features the synthesis of an underdeveloped chemical motif with simple and mild operating conditions.
Collapse
Affiliation(s)
- Chae Yeon Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Su Eun Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
9
|
Komatsuda M, Yamaguchi J. Ring-Opening Fluorination of Carbo/Heterocycles and Aromatics: Construction of Complex and Diverse Fluorine-Containing Molecules. CHEM REC 2023; 23:e202200281. [PMID: 36604947 DOI: 10.1002/tcr.202200281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Fluorine-containing molecules have attracted much attention in medicinal, agrochemical, and materials sciences because they offer unique physical and biological properties. Therefore, many efficient fluorination reactions have been developed over the years. Recent advancements in fluorination chemistry have expanded the range of substrates, and regioselectivity/stereoselectivity control has also been achieved. Ring-opening fluorination is an efficient method to construct complex fluorine-containing molecules with diversity, starting from simple cyclic compounds. This review aims to summarize developments in ring-opening fluorination, particularly with larger-sized cyclic compounds. Fluorine introduction and bond cleavage of cyclic compounds such as carbocycles, heterocycles, and aromatics provide efficient access to fluorine-containing compounds that are difficult to be synthesized by conventional methods.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| |
Collapse
|
10
|
Zhao M, Chen M, Wang T, Yang S, Peng Q, Tang P. Fluorocarbonylation via palladium/phosphine synergistic catalysis. Nat Commun 2023; 14:4583. [PMID: 37524725 PMCID: PMC10390470 DOI: 10.1038/s41467-023-40180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the growing importance of fluorinated organic compounds in pharmaceuticals, agrochemicals, and materials science, the introduction of fluorine into organic molecules is still a challenge, and no catalytic fluorocarbonylation of aryl/alkyl boron compounds has been reported to date. Herein, we present the development of palladium and phosphine synergistic redox catalysis of fluorocarbonylation of potassium aryl/alkyl trifluoroborate. Trifluoromethyl arylsulfonate (TFMS), which was used as a trifluoromethoxylation reagent, an easily handled and bench-scale reagent, has been employed as an efficient source of COF2. The reaction operates under mild conditions with good to excellent yields and tolerates diverse complex scaffolds, which allows efficient late-stage fluorocarbonylation of marked small-molecule drugs. Mechanistically, the key intermediates of labile Brettphos-Pd(II)-OCF3 complex and difluoro-Brettphos were synthesized and spectroscopically characterized, including X-ray crystallography. A detailed reaction mechanism involving the synergistic redox catalytic cycles Pd(II)/(0) and P(III)/(V) was proposed, and multifunction of phosphine ligand was identified based on 19F NMR, isotope tracing, synthetic, and computational studies.
Collapse
Affiliation(s)
- Mingxin Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Miao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Tian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Shuhan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
11
|
Lee HJ, Choi ES, Maruoka K. Development of a catalytic ester activation protocol for the efficient formation of amide bonds using an Ar‐I/HF•pyridine/mCPBA system. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo-Jun Lee
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Eun-Sol Choi
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Keiji Maruoka
- Kyoto University Graduate School of Pharmaceutical Sciences Sakyo 606-8501 Kyoto JAPAN
| |
Collapse
|
12
|
Komatsuda M, Ohki H, Kondo H, Suto A, Yamaguchi J. Ring-Opening Fluorination of Isoxazoles. Org Lett 2022; 24:3270-3274. [PMID: 35471036 DOI: 10.1021/acs.orglett.2c01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ring-opening fluorination of isoxazoles has been developed. Upon treatment of isoxazoles with an electrophilic fluorinating agent (Selectfluor), fluorination followed by deprotonation leads to tertiary fluorinated carbonyl compounds. This method features mild reaction conditions, good functional group tolerance, and a simple experimental procedure. Diverse transformations of the resulting α-fluorocyanoketones were also demonstrated, furnishing a variety of fluorinated compounds.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hugo Ohki
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Kondo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ayane Suto
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
13
|
Diversity-Oriented Synthesis Catalyzed by Diethylaminosulfur-Trifluoride-Preparation of New Antitumor Ecdysteroid Derivatives. Int J Mol Sci 2022; 23:ijms23073447. [PMID: 35408806 PMCID: PMC8998355 DOI: 10.3390/ijms23073447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Fluorine represents a privileged building block in pharmaceutical chemistry. Diethylaminosulfur-trifluoride (DAST) is a reagent commonly used for replacement of alcoholic hydroxyl groups with fluorine and is also known to catalyze water elimination and cyclic Beckmann-rearrangement type reactions. In this work we aimed to use DAST for diversity-oriented semisynthetic transformation of natural products bearing multiple hydroxyl groups to prepare new bioactive compounds. Four ecdysteroids, including a new constituent of Cyanotis arachnoidea, were selected as starting materials for DAST-catalyzed transformations. The newly prepared compounds represented combinations of various structural changes DAST was known to catalyze, and a unique cyclopropane ring closure that was found for the first time. Several compounds demonstrated in vitro antitumor properties. A new 17-N-acetylecdysteroid (13) exerted potent antiproliferative activity and no cytotoxicity on drug susceptible and multi-drug resistant mouse T-cell lymphoma cells. Further, compound 13 acted in significant synergism with doxorubicin without detectable direct ABCB1 inhibition. Our results demonstrate that DAST is a versatile tool for diversity-oriented synthesis to expand chemical space towards new bioactive compounds.
Collapse
|
14
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Komatsuda M, Suto A, Kondo H, Takada H, Kato K, Saito B, Yamaguchi J. Ring-opening fluorination of bicyclic azaarenes. Chem Sci 2022; 13:665-670. [PMID: 35173930 PMCID: PMC8768879 DOI: 10.1039/d1sc06273e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023] Open
Abstract
We have discovered a ring-opening fluorination of bicyclic azaarenes. Upon treatment of bicyclic azaarenes such as pyrazolo[1,5-a]pyridines with electrophilic fluorinating agents, fluorination of the aromatic ring is followed by a ring-opening reaction. Although this overall transformation can be classified as an electrophilic fluorination of an aromatic ring, it is a novel type of fluorination that results in construction of tertiary carbon-fluorine bonds. The present protocol can be applied to a range of bicyclic azaarenes, tolerating azines and a variety of functional groups. Additionally, mechanistic studies and enantioselective fluorination have been examined.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Ayane Suto
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Hiroki Kondo
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Hiroyuki Takada
- Research, Takeda Pharmaceutical Company Limited 26-1, Muraoka-Higashi 2-chome Fujisawa Kanagawa 251-8555 Japan
| | - Kenta Kato
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Bunnai Saito
- Research, Takeda Pharmaceutical Company Limited 26-1, Muraoka-Higashi 2-chome Fujisawa Kanagawa 251-8555 Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
16
|
Zhang Z, Luo J, Gao H. Rapid Access to Fluorinated Anilides via DAST-Mediated Deoxyfluorination of Arylhydroxylamines. Org Lett 2021; 23:9332-9336. [PMID: 34797084 DOI: 10.1021/acs.orglett.1c03779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new strategy for the synthesis of fluorinated anilides in the absence of metals and oxidants has been developed. This deoxyfluorination of N-arylhydroxylamines with diethylaminosulfur trifluoride (DAST) proceeded smoothly under mild conditions, and the ortho- or para-fluorinated aromatic amine products were prepared in moderate to good yields. Structurally diverse fluorinated anilides, including heterocyclic and pharmaceutically relevant molecules, can be efficiently constructed by this protocol.
Collapse
Affiliation(s)
- Zhuyong Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.,School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, Shandong 250100, China
| | - Junfei Luo
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, Shandong 250100, China
| |
Collapse
|
17
|
Qian YE, Zheng L, Zhao QL, Xiao JA, Chen K, Xiang HY, Yang H. TBN-triggered, manipulable annulations of o-hydroxyarylenaminones for divergent syntheses of oximinochromanones and oximinocoumaranones. Chem Commun (Camb) 2021; 57:12285-12288. [PMID: 34730570 DOI: 10.1039/d1cc05389b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Divergent synthesis provides an indispensable route to rapid acquisition of structurally diverse chemical scaffolds from identical starting materials. Herein, we describe unprecedented divergent annulations of o-hydroxyarylenaminones promoted by tert-butyl nitrite (TBN) under mild conditions. Two different types of benzo-oxa-heterocycle, including oximinochromanones and oximinocoumaranones, were smoothly assembled with a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
18
|
Jiang H, Shen H, Zhu S, Wang B, Yang Y, Nong Z, Yi M, Tang S, Gui QW. Diethylaminosulfur Trifluoride: A Novel, Low-Cost, Stable Double Thiolation Reagent for Imidazo[1,2-α]pyridines. ACS OMEGA 2021; 6:26273-26281. [PMID: 34660986 PMCID: PMC8515576 DOI: 10.1021/acsomega.1c03291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
We report a novel, inexpensive double thiolation reagent that sulfurizes a broad range of imidazo[1,2-α]pyridines under mild conditions. Importantly, diethylaminosulfur trifluoride, as a common nucleophilic fluorinating reagent, was utilized as a novel thiolation reagent.
Collapse
Affiliation(s)
- Hongmei Jiang
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Haicheng Shen
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Sha Zhu
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Binbin Wang
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Yujie Yang
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Zhibin Nong
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Min Yi
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
| | - Shiyun Tang
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
- China
Yunnan Key Laboratory of Tobacco Chemistry, Research and Development
Center, China Tobacco Yunnan Industrial
Company, Kunming 650231, People’s Republic of China
| | - Qing-Wen Gui
- College
of Chemistry and Materials Science, Hunan
Agricultural University, Changsha 410128, People’s Republic
of China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
- ,
| |
Collapse
|
19
|
|
20
|
Kaźmierczak M, Bilska‐Markowska M. Diethylaminosulfur Trifluoride (DAST) Mediated Transformations Leading to Valuable Building Blocks and Bioactive Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Monika Bilska‐Markowska
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
21
|
Meng X, Chen D, Liu R, Jiang P, Huang S. Synthesis of 2-(Cyanomethyl)benzoic Esters via Carbon-Carbon Bond Cleavage of Indanones. J Org Chem 2021; 86:10852-10860. [PMID: 34313443 DOI: 10.1021/acs.joc.1c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel synthesis of 2-(cyanomethyl)benzoic esters from indanone derivatives has been established. This reaction proceeds via a deprotonation of alcohols with a chemical base, followed by a nucleophilic addition to indanones and Beckmann fragmentation. In addition, this reaction could also work under electrochemical conditions, and no external chemical bases were needed. This mild method offers a novel strategy for the late-stage functionalization of various natural alcohols.
Collapse
Affiliation(s)
- Xiangtai Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Rui Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
22
|
Brittain WDG, Cobb SL. Carboxylic Acid Deoxyfluorination and One-Pot Amide Bond Formation Using Pentafluoropyridine (PFP). Org Lett 2021; 23:5793-5798. [PMID: 34251217 PMCID: PMC8397423 DOI: 10.1021/acs.orglett.1c01953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This work describes the application of pentafluoropyridine (PFP), a cheap commercially available reagent, in the deoxyfluorination of carboxylic acids to acyl fluorides. The acyl fluorides can be formed from a range of acids under mild conditions. We also demonstrate that PFP can be utilized in a one-pot amide bond formation via in situ generation of acyl fluorides. This one-pot deoxyfluorination amide bond-forming reaction gives ready access to amides in yields of ≤94%.
Collapse
Affiliation(s)
- William D G Brittain
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
23
|
Song JW, Lim HN. Synthesis of Carbamoyl Fluorides via a Selective Fluorinative Beckmann Fragmentation. Org Lett 2021; 23:5394-5399. [PMID: 34197129 DOI: 10.1021/acs.orglett.1c01721] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fluorinative Beckmann fragmentation of α-oximinoamides was devised to provide synthetically useful carbamoyl fluorides. High selectivity for fragmentation over a potentially competing Beckmann rearrangement was observed. This protocol has a distinct mechanism and thus a different substrate scope compared with other synthetic methods. α-Oximinoamides derived from the readily available secondary amines, lactams, or isatins were converted into structurally diverse carbamoyl fluorides.
Collapse
Affiliation(s)
- Jin Woo Song
- Eco-Friendly New Materials Research Center, Therapeutics&Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.,Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry and Biochemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.,Eco-Friendly New Materials Research Center, Therapeutics&Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
24
|
Kim D, Lim HN. An expedient synthesis of cyanoformates via DAST-mediated C C bond cleavage of α-oximino-β-ketoesters. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Liang Y, Zhao Z, Taya A, Shibata N. Acyl Fluorides from Carboxylic Acids, Aldehydes, or Alcohols under Oxidative Fluorination. Org Lett 2021; 23:847-852. [PMID: 33464095 DOI: 10.1021/acs.orglett.0c04087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe a novel reagent system to obtain acyl fluorides directly from three different functional group precursors: carboxylic acids, aldehydes, or alcohols. The transformation is achieved via a combination of trichloroisocyanuric acid and cesium fluoride, which facilitates the synthesis of various acyl fluorides in high yield (up to 99%). It can be applied to the late-stage functionalization of natural products and drug molecules that contain a carboxylic acid, an aldehyde, or an alcohol group.
Collapse
Affiliation(s)
- Yumeng Liang
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Akihito Taya
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, China
| |
Collapse
|