1
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 PMCID: PMC12056945 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and EngineeringYamaguchi University2-16-1 TokiwadaiUbeYamaguchi755-8611Japan
| |
Collapse
|
2
|
Wang DM, He YQ, Wu Y, Tang Y, Wang P. Construction of Lactones via Ligand-Enabled Ni-Catalyzed Alkene Hydroxylarylation/Lactonization. Org Lett 2024; 26:8171-8176. [PMID: 39297727 DOI: 10.1021/acs.orglett.4c03108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here, we report the preparation of lactones via Ni-catalyzed alkene hydroxylarylation and sequential intramolecular lactonization with O2 as a green oxidant and oxygen source. The bulky 1,3-diketone ligand is crucial by enabling Ni-catalyzed hydroxylarylation of alkenes, providing numerous phthalide and furanone derivatives with high efficiency under mild conditions. The synthetic value of this methodology was further demonstrated by the efficient synthesis of typhaphthalide and a monoamine oxidase B inhibitor.
Collapse
Affiliation(s)
- Dao-Ming Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200062, People's Republic of China
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yu-Qing He
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, People's Republic of China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yong Tang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200062, People's Republic of China
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, People's Republic of China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, Zhejiang 310024, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
3
|
Adhikari A, Bhakta S, Ghosh T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
5
|
Li W, Liang C, Luo B, Wang Z, Li H, Li X, Yang H, Li H. Perfluoroalkylation of Terminal Alkynes with Perfluoroalkyl Iodides Catalyzed by an Iron Salt. J Org Chem 2022; 87:1554-1558. [PMID: 34981920 DOI: 10.1021/acs.joc.1c02522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The one-step, direct perfluoroalkylation of terminal alkynes with perfluoroalkyl iodides has been developed in which a simple ligandless iron salt is employed as the catalyst. Various perfluoroalkylated alkynes could be afforded in good to excellent yields with good functional group compatibility. Preliminary mechanistic studies suggest the involvement of the perfluoroalkyl radical in the catalytic cycle and the perfluoroalkylated alkenyl iodides as intermediates. The method provides straight, streamlined, and sustainable access to perfluoroalkylated acetylenes.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changfa Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Baogui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhenhui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hengyuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huanjian Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
6
|
Wang S, Jiang P, Li R, Yang M, Deng G. Progress in Selective Construction of Functional Aromatics with Cyclohexanone. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Pounder A, Tam W. Iron-catalyzed domino coupling reactions of π-systems. Beilstein J Org Chem 2021; 17:2848-2893. [PMID: 34956407 PMCID: PMC8685557 DOI: 10.3762/bjoc.17.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of environmentally benign, inexpensive, and earth-abundant metal catalysts is desirable from both an ecological and economic standpoint. Certainly, in the past couple decades, iron has become a key player in the development of sustainable coupling chemistry and has become an indispensable tool in organic synthesis. Over the last ten years, organic chemistry has witnessed substantial improvements in efficient synthesis because of domino reactions. These protocols are more atom-economic, produce less waste, and demand less time compared to a classical stepwise reaction. Although iron-catalyzed domino reactions require a mindset that differs from the more routine noble-metal, homogenous iron catalysis they bear the chance to enable coupling reactions that rival that of noble-metal-catalysis. This review provides an overview of iron-catalyzed domino coupling reactions of π-systems. The classifications and reactivity paradigms examined should assist readers and provide guidance for the design of novel domino reactions.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
8
|
Luo Y, Tian T, Nishihara Y, Lv L, Li Z. Iron-catalysed radical cyclization to synthesize germanium-substituted indolo[2,1- a]isoquinolin-6(5 H)-ones and indolin-2-ones. Chem Commun (Camb) 2021; 57:9276-9279. [PMID: 34519301 DOI: 10.1039/d1cc03907e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple and efficient strategy for iron-catalysed cascade radical cyclization was developed, by which an array of germanium-substituted indolo[2,1-a]isoquinolin-6(5H)-ones and indolin-2-ones were obtained in one pot with germanium hydrides as radical precursors. A rapid intramolecular radical trapping mode enabled the selective arylgermylation of alkenes over the prevalent hydrogermylation reaction.
Collapse
Affiliation(s)
- Yani Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Tian Tian
- Department of Chemistry, Renmin University of China, Beijing 100872, China. .,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
9
|
Ma L, Jin F, Cheng X, Tao S, Jiang G, Li X, Yang J, Bao X, Wan X. [2 + 2 + 1] Cycloaddition of N-tosylhydrazones, tert-butyl nitrite and alkenes: a general and practical access to isoxazolines. Chem Sci 2021; 12:9823-9830. [PMID: 34349956 PMCID: PMC8293996 DOI: 10.1039/d1sc02352g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
N-Tosylhydrazones have proven to be versatile synthons over the past several decades. However, to our knowledge, the construction of isoxazolines based on N-tosylhydrazones has not been examined. Herein, we report the first demonstrations of [2 + 2 + 1] cycloaddition reactions that allow the facile synthesis of isoxazolines, employing N-tosylhydrazones, tert-butyl nitrite (TBN) and alkenes as reactants. This process represents a new type of cycloaddition reaction with a distinct mechanism that does not involve the participation of nitrile oxides. This approach is both general and practical and exhibits a wide substrate scope, nearly universal functional group compatibility, tolerance of moisture and air, the potential for functionalization of complex bioactive molecules and is readily scaled up. Both control experiments and theoretical calculations indicate that this transformation proceeds via the in situ generation of a nitronate from the coupling of N-tosylhydrazone and TBN, followed by cycloaddition with an alkene and subsequent elimination of a tert-butyloxy group to give the desired isoxazoline.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
10
|
Cheng F, Wang LL, Mao YH, Dong YX, Liu B, Zhu GF, Yang YY, Guo B, Tang L, Zhang JQ. Iron-Catalyzed Radical Annulation of Unsaturated Carboxylic Acids with Disulfides for the Synthesis of γ-Lactones. J Org Chem 2021; 86:8620-8629. [PMID: 34097828 DOI: 10.1021/acs.joc.1c00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An efficient aerobic iron-catalyzed annulation of unsaturated carboxylic acids with disulfides has been developed. This procedure proceeds using FeCl3 as the catalyst and KI as an iodine source under an air atmosphere, which provides practical access to a wide range of substituted γ-lactone derivatives. The disclosed method is quite simple, highly atom-economic, environmentally friendly, and tolerates a broad substrate scope.
Collapse
Affiliation(s)
- Fei Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Li-Li Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Yuan-Hu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Yong-Xi Dong
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Bin Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Gao-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Yuan-Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| | - Ji-Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
11
|
Bertho S, Maazaoui R, Torun D, Dondasse I, Abderrahim R, Nicolas C, Gillaizeau I. Iron catalyzed β-C(sp 2)–H alkylation of enamides. NEW J CHEM 2021. [DOI: 10.1039/d1nj03673d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An attractive and cheap alternative approach was developed for the β-C(sp2)–H (fluoro)alkylation of a range of cyclic and acyclic non-aromatic enamides using either FeCl2 as a catalyst or a stoichiometric amount of nontoxic iron powder.
Collapse
Affiliation(s)
- Sylvain Bertho
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, rue de Chartes, Université d’Orléans, F-45067 Orléans Cedex 2, France
| | - Radhouan Maazaoui
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, rue de Chartes, Université d’Orléans, F-45067 Orléans Cedex 2, France
| | - Damla Torun
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, rue de Chartes, Université d’Orléans, F-45067 Orléans Cedex 2, France
| | - Ismaël Dondasse
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, rue de Chartes, Université d’Orléans, F-45067 Orléans Cedex 2, France
| | - Raoudha Abderrahim
- Université de Carthage, Faculté des Sciences de Bizerte, Laboratoire de Synthèse Hétérocyclique, 7021 Jarzouna, Bizerte, Tunisia
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, rue de Chartes, Université d’Orléans, F-45067 Orléans Cedex 2, France
| | - Isabelle Gillaizeau
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, rue de Chartes, Université d’Orléans, F-45067 Orléans Cedex 2, France
| |
Collapse
|
12
|
Li D. Copper-Catalyzed Alkylation of Silyl Enol Ethers with Sterically Hindered α-Bromocarbonyls: Access to the Histamine H 3 Receptor Antagonist. J Org Chem 2021; 86:609-618. [PMID: 33295766 DOI: 10.1021/acs.joc.0c02277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general and efficient copper-catalyzed alkylation of silyl enol ethers with functionalized alkyl bromides has been developed for the synthesis of the sterically hindered γ-ketoesters. The transformation was induced through C(sp3)-halogen activation of commercially available sterically hindered alkyl bromides under mild conditions in good results. The strategy could be used for the synthesis of biologically active histamine H3 receptor (H3R) antagonist for medicinal purposes.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China
| |
Collapse
|