1
|
Iwamoto S, Nakano R, Sasaki K, Kobayashi S, Taira Y, Takei K, Kawakita R, Tokuyama A, Nakamura H, Tomoike M, Kawahara R, Murase A, Simizu S, Chida N, Okamura T, Sato T. Total Synthesis of Isodaphlongamine H by Iridium-Catalyzed Reductive [3 + 2] Cycloaddition of N-Hydroxylactam. Angew Chem Int Ed Engl 2025:e08062. [PMID: 40326370 DOI: 10.1002/anie.202508062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
The total synthesis of isodaphlongamine H based on a lactam strategy, which enables quick access to complex cyclic amines, is described. The strategy begins with alkylation of a chiral lactam and subsequent N-oxidation via an imino ether to afford the N-hydroxylactam. For the key transformation to functionalize the amide carbonyl, an iridium-catalyzed reductive [3 + 2] cycloaddition of the N-hydroxylactam provides a tricyclic isoxazolidine in a one-pot process. After the coupling reaction with an allylic silane fragment, the total synthesis is accomplished through intramolecular Hosomi-Sakurai allylation to construct a pentacyclic core. The deoxygenated pentacyclic intermediate shows higher cytotoxicity against HeLa and U937 cell lines than isodaphlongamine H, and might become a lead compound for further biological study.
Collapse
Affiliation(s)
- Sora Iwamoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Reki Nakano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keiji Sasaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shoichiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Taira
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Koya Takei
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Reiji Kawakita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Ayako Tokuyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Haruto Nakamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Manato Tomoike
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Akari Murase
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
2
|
Liang X, Ding QH, Yang JT, Yang HF, Deng Y, Shi L, Wei K, Yang YR. Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation. Nat Commun 2024; 15:10812. [PMID: 39737970 DOI: 10.1038/s41467-024-55111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs. Additionally, the other two adjacent stereogenic centers can be installed diastereoselectively by Zn(BH4)2-promoted reduction and Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation. Oxy-Michael addition delivered the fused tetrahydrofuran-γ-lactone scaffold. At the later stage, hydrogenation or oxidation of pyrrole moiety furnished groups of tetrahydropyrrole and pyrrolidone. Finally, vinylogous Mannich reaction of an in situ generated iminium ion or Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation of aldehyde installed the monocyclic lactone for parvistemonine (2) and didehydroparvistemonine (3), respectively.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qian-Hui Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Ting Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Fei Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Shi
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kun Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yu-Rong Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
3
|
Chun Y, Luu KB, Woerpel KA. Acetal Substitution Reactions: Stereoelectronic Effects, Conformational Analysis, Reactivity vs. Selectivity, and Neighboring-Group Participation. Synlett 2024; 35:1763-1787. [PMID: 39502501 PMCID: PMC11534297 DOI: 10.1055/s-0042-1751541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Acetal substitution reactions can proceed by a number of mechanisms, but oxocarbenium ion intermediates are involved in many of these reactions. Our research has focused on understanding the conformational preferences, structures, and reactions of these intermediates. This Account summarizes our observations that electrostatic effects play a significant role in defining the preferred conformations, and that torsional effects determine how those intermediates react. Neighboring-group effects are not as straightforward as they might seem, considering that oxocarbenium ion intermediates are in equilibrium with structures that involve stabilization by a nearby substituent.
Collapse
Affiliation(s)
- Yuge Chun
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Khoi B. Luu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
4
|
Sugiyama Y, Yamada K, Kaneko D, Kusagawa Y, Okamura T, Sato T. Iridium-Catalyzed Reductive (3+2) Annulation of Lactams Enabling the Rapid Total Synthesis of (±)-Eburnamonine. Angew Chem Int Ed Engl 2024; 63:e202317290. [PMID: 38088513 DOI: 10.1002/anie.202317290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/30/2023]
Abstract
A reductive (3+2) annulation of lactams through iridium-catalyzed hydrosilylation and photoredox coupling with α-bromoacetic acid was developed. The iridium-catalyzed hydrosilylation of the lactam carbonyl group and subsequent elimination provide a transient cyclic enamine, which undergoes iridium-catalyzed photoredox coupling with α-bromoacetic acid in a one-pot process. The developed conditions show high functional-group tolerance and provide cyclic N,O-acetals containing a quaternary carbon center. The resulting N,O-acetals undergo a variety of acid-mediated nucleophilic addition reactions via iminium ions to give substituted cyclic amines. The developed sequence including reductive (3+2) annulation and acid-mediated nucleophilic addition was successfully applied to the four-step total synthesis of (±)-eburnamonine.
Collapse
Affiliation(s)
- Yasukazu Sugiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kento Yamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daiki Kaneko
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuya Kusagawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
5
|
Wang X, Yin G, Wang Y, Zeng Y, Peng Y, Zhang X, Peng X, Wang Z. Asymmetric Total Synthesis of Four Stemona Alkaloids. Org Lett 2023; 25:2213-2217. [PMID: 36966439 DOI: 10.1021/acs.orglett.3c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Asymmetric total syntheses of four Stemona alkaloids were accomplished, and among them, bisdehydrostemoninine A and stemoninine A were synthesized for the first time. Notably, these four alkaloids were divergently synthesized from a common tetracyclic intermediate, which was easily obtained from a known compound. Friedel-Crafts acylation was employed to introduce the key side chain at position C3 of Stemona alkaloids.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Gaofeng Yin
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Yaofu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ying Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
6
|
Olivier WJ, Henneveld JS, Smith JA, Hawkins BC, Bissember AC. Strategies for the synthesis of Stemona alkaloids: an update. Nat Prod Rep 2022; 39:2308-2335. [PMID: 36218078 DOI: 10.1039/d2np00058j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2009 to 2022The Stemona alkaloids, which are found in plant species from the family Stemonaceae, represent a tremendously large and structurally-diverse family of natural products. This review presents and discusses a selection of case studies, grouped by alkaloid class, that showcase the key strategies and overall progress that has been made in the synthesis of Stemona alkaloids and related compounds since 2009. Structural reassignments that have been reported over this period are also identified where necessary.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Jackson S Henneveld
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand.
| | - Jason A Smith
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Bill C Hawkins
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
7
|
Shi BB, Kongkiatpaiboon S, Chen G, Schinnerl J, Cai XH. Nematocidal Alkaloids from the Roots of (H.Lév.)K.Krause and identification of their pharmacophoric moiety. Bioorg Chem 2022; 130:106239. [DOI: 10.1016/j.bioorg.2022.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
8
|
Olivier WJ, Smith JA, Bissember AC. Structural Revision of Parvistemoamide: Informing Biosynthetic Proposals of Stemona Alkaloids. Org Lett 2022; 24:5772-5776. [PMID: 35901193 DOI: 10.1021/acs.orglett.2c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natural product parvistemoamide was isolated in 1991 and has ostensibly eluded synthesis. Its distinctive assigned structure represents the first and only Stemona alkaloid within its class. For over 30 years, this structure has influenced biosynthetic proposals concerning this family of natural products. Following synthetic studies and comprehensive analysis of relevant literature, a revised structure of parvistemoamide is proposed that is consistent with the fundamental Stemona alkaloid stemoamide.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jason A Smith
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
9
|
Rosso GB, Paz BM, Pilli RA. Formal Syntheses of (±)‐Tuberostemospiroline and (±)‐Stemo‐lactam R and Total Synthesis of (±)‐Stemoamide. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giovanni Bernardi Rosso
- State University of Campinas: Universidade Estadual de Campinas Chemistry Cidade Universitaria Zeferino Vaz 1308-970 Campinas BRAZIL
| | - Bruno Matos Paz
- State University of Campinas: Universidade Estadual de Campinas Chemistry Cidade Universitaria Zeferino Vaz 13083-970 Campinas BRAZIL
| | - Ronaldo Aloise Pilli
- UNICAMP Institute of Chemistry Organic Chemistry DepartmentPO BOX 6154 13083-970 Campinas, SP BRAZIL
| |
Collapse
|
10
|
Sugiyama Y, Soda Y, Yoritate M, Tajima H, Takahashi Y, Shibuya K, Ogihara C, Yokoyama T, Oishi T, Sato T, Chida N. Lactam Strategy Using Amide-Selective Nucleophilic Addition for the Quick Access to Complex Amines: Unified Total Synthesis of Stemoamide-Type Alkaloids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasukazu Sugiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yasuki Soda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Makoto Yoritate
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hayato Tajima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yoshito Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kana Shibuya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Chisato Ogihara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Yokoyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
11
|
Shi T, Cao F, Chen J, Wang X, Yin G, Wang H, Wang Z. Total syntheses of seven stemoamide-type Stemona alkaloids. Org Chem Front 2022. [DOI: 10.1039/d1qo01578h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Six Stemona alkaloids were synthesized racemically using stemoamide, obtained via a cascade cyclization or our reported transannular cyclization of parvistemoamide, as the common intermediate.
Collapse
Affiliation(s)
- Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Gaofeng Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Huihong Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Wang X, Shi T, Yin G, Wang Y, Li Z, Wang Z. Asymmetric Total Syntheses of Five Pyrrole-Type Stemona Alkaloids. Org Chem Front 2022. [DOI: 10.1039/d2qo00456a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric total syntheses of five pyrrole-type Stemona alkaloids and two stereoisomers were accomplished, among which 3-n-butylneostemonine and bisdehydroneostemonine were synthesized for the first time, and the NMR data of...
Collapse
|
13
|
Shi T, Wang X, Chen JH, Cao F, Yin G, Zeng YF, Wang Z. Recent Advances in the Transformations of Different Types of Stemona Alkaloids. Org Chem Front 2022. [DOI: 10.1039/d2qo00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, researches on the total syntheses of Stemona alkaloids with different 5/7 bicyclic systems have attracted increasing attention, and the development momentum in this field has gradually changed...
Collapse
|
14
|
Deng Y, Liang X, Wei K, Yang YR. Ir-Catalyzed Asymmetric Total Syntheses of Bisdehydrotuberostemonine D, Putative Bisdehydrotuberostemonine E and Structural Revision of the Latter. J Am Chem Soc 2021; 143:20622-20627. [PMID: 34870982 DOI: 10.1021/jacs.1c11265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first total syntheses of bisdehydrotuberostemonine D (8) and putative bisdehydrotuberostemonine E (9), two novel pyrrole Stemona alkaloids, along with the synthesis of bisdehydrotuberostemonine (3) have been completed in 12-13 steps. Our strategy harnesses the power of transition-metal-catalyzed reactions employing Ir, Ru, and Pd, in particular Ir-catalyzed asymmetric allylation of aldehydes, two distinct protocols recently developed by Carreira and Krische, respectively. The threefold use of Ir catalysis, first in the stereodivergent construction of two contiguous stereocenters at C (9,10) and then in rapid formation of the two γ-butyrolactone motifs, enabled the route's efficiency. Through this work, the originally assigned structure of bisdehydrotuberostemonine E (9) should be revised as 18α-bisdehydrotuberostemonine D (8*).
Collapse
Affiliation(s)
- Yi Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
15
|
Princiotto S, Jayasinghe L, Dallavalle S. Recent advances in the synthesis of naturally occurring tetronic acids. Bioorg Chem 2021; 119:105552. [PMID: 34929518 DOI: 10.1016/j.bioorg.2021.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
During the last decades the interest towards natural products containing the tetronic acid moiety augmented significantly, due to their challenging structures and to the wide range of biological activities they display. This increasing enthusiasm has led to noteworthy advances in the development of innovative methodologies for the construction of the butenolide nucleus. This review provides an overview of the progress in the synthesis of tetronic acid as a structural key motif of natural compounds, covering the last 15 years. Herein, the most representative synthetic pathways towards structurally diverse natural tetronic acids are grouped according to the strategy followed. The first part describes the functionalization of a preformed tetronic acid core by intermolecular reactions (cross-coupling reactions, nucleophilic substitution, multicomponent reactions) whereas the second part deals with intramolecular approaches (Dieckmann, cycloaddition or ring expansion reactions) to construct the heterocyclic core. This rational subcategorization allowed us to make some considerations about the best approaches for the synthesis of specific substrates, including modern intriguing methodologies such as microwave irradiation, solid phase anchoring, bio-transformations and continuous flow processes.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy; National Institute of Fundamental Studies, Kandy 20000, Sri Lanka.
| |
Collapse
|
16
|
Matheau‐Raven D, Dixon DJ. General α-Amino 1,3,4-Oxadiazole Synthesis via Late-Stage Reductive Functionalization of Tertiary Amides and Lactams*. Angew Chem Int Ed Engl 2021; 60:19725-19729. [PMID: 34191400 PMCID: PMC8457168 DOI: 10.1002/anie.202107536] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/25/2023]
Abstract
An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol %) Vaska's complex (IrCl(CO)(PPh3 )2 ) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of α-amino 1,3,4-oxadiazole architectures were accessed from carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. The high chemoselectivity of the catalytic reductive activation step allowed late-stage functionalization of 10 drug molecules, including the synthesis of heterodiazole-fused drug-drug conjugates.
Collapse
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Darren J. Dixon
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| |
Collapse
|
17
|
Matheau‐Raven D, Dixon DJ. General α‐Amino 1,3,4‐Oxadiazole Synthesis via Late‐Stage Reductive Functionalization of Tertiary Amides and Lactams**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
18
|
Guo Z, Bao R, Li Y, Li Y, Zhang J, Tang Y. Tailored Synthesis of Skeletally Diverse Stemona Alkaloids through Chemoselective Dyotropic Rearrangements of β-Lactones. Angew Chem Int Ed Engl 2021; 60:14545-14553. [PMID: 33848039 DOI: 10.1002/anie.202102614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 12/13/2022]
Abstract
The collective synthesis of skeletally diverse Stemona alkaloids featuring tailored dyotropic rearrangements of β-lactones as key elements is described. Specifically, three typical 5/7/5 tricyclic skeletons associated with stemoamide, tuberostemospiroline and parvistemonine were first accessed through chemoselective dyotropic rearrangements of β-lactones involving alkyl, hydrogen, and aryl migration, respectively. By the rational manipulation of substrate structures and reaction conditions, these dyotropic rearrangements proceeded with excellent efficiency, good chemoselectivity and high stereospecificity. Furthermore, several polycyclic Stemona alkaloids, including saxorumamide, isosaxorumamide, stemonine and bisdehydroneostemoninine, were obtained from the aforementioned tricyclic skeletons through late-stage derivatizations. A novel visible-light photoredox-catalyzed formal [3+2] cycloaddition was also developed, which offers a valuable tool for accessing oxaspirobutenolide and related scaffolds.
Collapse
Affiliation(s)
- Zhen Guo
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Ruiyang Bao
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yuanhe Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yunshan Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Guo Z, Bao R, Li Y, Li Y, Zhang J, Tang Y. Tailored Synthesis of Skeletally Diverse
Stemona
Alkaloids through Chemoselective Dyotropic Rearrangements of β‐Lactones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhen Guo
- School of Pharmaceutical Sciences MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Ruiyang Bao
- School of Pharmaceutical Sciences MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Yuanhe Li
- School of Pharmaceutical Sciences MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Yunshan Li
- School of Pharmaceutical Sciences MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Yefeng Tang
- School of Pharmaceutical Sciences MOE Key Laboratory of, Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Czerwiński PJ, Furman B. Reductive Functionalization of Amides in Synthesis and for Modification of Bioactive Compounds. Front Chem 2021; 9:655849. [PMID: 33981672 PMCID: PMC8107389 DOI: 10.3389/fchem.2021.655849] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, applications of the amide reductive functionalization methodology for the synthesis and modification of bioactive compounds are covered. A brief summary of the different protocols is presented in the introduction, followed by the synthetic application of these in late-stage functionalization, leading to known pharmaceuticals or to their derivatives, including bioisosteres, with potential higher activity as the main axis of the article. The synthetic approach to natural products based on amide reduction is also discussed; however, this is given in a condensed form focusing on recent or as yet unexplored applications due to a number of recently published excellent reviews covering this topic. The aim of this review is to illustrate the potential of reductive functionalization of amides as an elegant and useful tool in the synthesis of bioactive compounds and inspire further work in this field.
Collapse
Affiliation(s)
- Paweł J Czerwiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Furman
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Olivier WJ, Bissember AC, Smith JA. Unified Total Syntheses of (±)-Sessilifoliamides B, C, and D. Org Lett 2021; 23:3437-3441. [PMID: 33847506 DOI: 10.1021/acs.orglett.1c00895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The first total syntheses of the Stemona alkaloids sessilifoliamides B and D and the second synthesis of sessilifoliamide C have been completed from a simple pyrrole substrate. The bicyclic lactam core was prepared on a gram scale via a Brønsted acid mediated cyclization and controlled oxidation with Dess-Martin periodinane. This delivered sessilifoliamide C (and its C-11 epimer) in 24% yield over 11 steps, and sessilifoliamides B and D in 13 and 17 steps, respectively.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jason A Smith
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
22
|
Zheng Y, Yang HD, Wei K, Yang YR. Synthetic Studies toward Parvistemoline Using Asymmetric Ir/Amine-Catalyzed Allylation. J Org Chem 2021; 86:6025-6029. [PMID: 33769043 DOI: 10.1021/acs.joc.1c00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The common, key tricyclic core of stemona alkaloids parvistemonine (1) and parvistemoline (2), whose synthetic efforts have not reported yet, was constructed through a new strategy in which three contiguous stereogenic centers were set by using Carreira's asymmetric Ir/amine-catalyzed allylation of aldehyde with α-vinylfurfuryl alcohol and Ellman's sulfinamide chiral auxiliary, respectively. The furan ring was especially designed to act as the precursor of the butyrolactone while establishing the significant chirality.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Dou Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|