1
|
Wu YJ, Ma C, Bilal M, Liang YF. Nickel-Catalyzed Reductive Cyanation of Aryl Halides and Epoxides with Cyanogen Bromide. Molecules 2024; 29:6016. [PMID: 39770100 PMCID: PMC11678332 DOI: 10.3390/molecules29246016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent. A variety of aryl halides and epoxides featuring diverse functional groups, such as -TMS, -Bpin, -OH, -NH2, -CN, and -CHO, were successfully converted into nitriles in moderate-to-good yields. Moreover, the syntheses at gram-scale and application in late-stage cyanation of natural products and drugs reinforces its potentiality.
Collapse
Affiliation(s)
| | | | | | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (Y.-J.W.); (C.M.); (M.B.)
| |
Collapse
|
2
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 PMCID: PMC11955248 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
3
|
Yue G, Liu Q, Wei J, Pi Y, Qiu D, Mo F. Direct Stannylation and Silylation of Arylmethanols by Palladium Catalysis. J Org Chem 2023. [PMID: 36790386 DOI: 10.1021/acs.joc.2c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A direct transformation of non-preactivated benzyl alcohols to benzyl stannanes and benzyl silanes was realized through Pd-catalyzed C(sp3)-O activation process. By using versatile tin and silicon sources, these reactions exhibit a broad substrate scope and a high efficiency under mild conditions, affording functionalized benzyl and allylic stannanes and benzylsilanes with high yields. The successful implementation of gram-scale stannylation/silylation as well as the one-pot Stille coupling reaction demonstrates the potential application of this method in organic synthesis. Both experimental and theoretical investigations reveal the mechanistic details of this reaction.
Collapse
Affiliation(s)
- Guanglu Yue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qianyi Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jingyao Wei
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yanqiong Pi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Duran-Camacho G, Hethcox JC. Nickel-Catalyzed Cyanation of (Hetero)aryl Bromides Using DABAL-Me 3 as a Soluble Reductant. Org Lett 2022; 24:8397-8400. [DOI: 10.1021/acs.orglett.2c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Geraldo Duran-Camacho
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - J. Caleb Hethcox
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Peng S, Yang L. Copper‐Catalyzed Cyanation of Aryl Iodides with Formamide as the Cyano Source. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sha Peng
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Hunan 411105 PR China
| | - Luo Yang
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province College of Chemistry Xiangtan University Hunan 411105 PR China
| |
Collapse
|
6
|
Wang Z, Hao J, Lv Y, Qu C, Yue H, Wei W. Additive‐Free Visible‐Light‐Initiated Three‐Component Cyanation and Azidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiwei Wang
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Jindong Hao
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yufen Lv
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chengming Qu
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Huilan Yue
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wei
- Qufu Normal University Chemistry Jingxuan west road 57 number 273165 Qufu CHINA
| |
Collapse
|
7
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
8
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|