1
|
Mishra DR, Mishra NP. Recent breakthroughs in ring-opening annulation reactions of aziridines. Org Biomol Chem 2025; 23:2967-2996. [PMID: 39791905 DOI: 10.1039/d4ob01577k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aziridines, characterized by their highly constrained three-membered nitrogen-containing heterocyclic ring system, serve as compelling synthetic intermediates for synthesizing numerous naturally occurring alkaloids and pharmaceuticals. The distinct ring strain arising from the geometric constraints of these sp3-rich trigonal rings imparts high reactivity, thereby offering a wealth of intriguing synthetic opportunities. Recent advances in the chemistry and reactivity of aziridines have unveiled significant progress in preparing more complex heterocycles. This review consolidates and examines recent publications on the ring-opening annulation reactions of aziridines, highlighting the latest breakthroughs, emerging trends, and future directions in this dynamic field.
Collapse
Affiliation(s)
- Deepak Ranjan Mishra
- Department of Chemistry, Kamala Nehru Women's College, Bhubaneswar, Odisha, 751001, India.
| | | |
Collapse
|
2
|
Goswami G, Singh B, Wani IA, Mal A, Ghorai MK. A Synthetic Route to Tetrahydro-1 H-azepino[4,3,2- cd]indoles via Ring-Opening Cyclization of Activated Azetidines with 4-Bromoindole: Toward a Vasopressin V2 Receptor Antagonist. J Org Chem 2024; 89:11576-11587. [PMID: 39102588 DOI: 10.1021/acs.joc.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A simple one-pot, two-step strategy for the synthesis of tetrahydro-1H-azepino[4,3,2-cd]indoles via Lewis acid-catalyzed SN2-type ring opening of activated azetidines with 4-bromoindole, followed by a Pd-catalyzed intramolecular C-N cyclization reaction, with good to excellent yields is described. Utilizing this protocol, the vasopressin V2 receptor antagonist precursor has been synthesized easily. Enantioenriched tetrahydro-1H-azepino[4,3,2-cd]indoles were obtained by starting from enantiopure azetidine.
Collapse
Affiliation(s)
- Gaurav Goswami
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Imtiyaz Ahmad Wani
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Abhijit Mal
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
3
|
Hashimoto K, Higuchi D, Matsubara S, Murakami K. Copper-catalyzed reaction of aziridine for the synthesis of substituted imidazolidine and imidazolidinone. Front Chem 2023; 11:1272034. [PMID: 37841205 PMCID: PMC10570437 DOI: 10.3389/fchem.2023.1272034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Herein we report a copper-catalyzed synthesis of imidazolidine by employing the reaction of aziridine with imine. The reaction smoothly provided a diverse range of 2-substituted imidazolidines with high compatibility with various functional groups. Moreover, during our investigation, we discovered that isocyanate also reacted with aziridine to yield substituted imidazolidinones efficiently. The versatility of these reactions was further demonstrated by their application in the synthesis of hybrid molecules derived from two pharmaceutical compounds. This approach opens new possibilities for the discovery of novel classes of bioactive molecules.
Collapse
Affiliation(s)
- Kota Hashimoto
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Japan
| | - Daiki Higuchi
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Japan
| | - Satoshi Matsubara
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Japan
- JST-PRESTO, Chiyoda, Japan
| |
Collapse
|
4
|
Singh B, Kumar M, Goswami G, Verma I, Ghorai MK. Ring-Opening Cyclization (ROC) of Aziridines with Propargyl Alcohols: Synthesis of 3,4-Dihydro-2 H-1,4-oxazines. J Org Chem 2023; 88:4504-4518. [PMID: 36972376 DOI: 10.1021/acs.joc.2c03093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Activated aziridines react with propargyl alcohols in the presence of Zn(OTf)2 as the Lewis acid catalyst following an SN2-type ring-opening mechanism to furnish the corresponding amino ether derivatives. Those amino ethers further undergo intramolecular hydroamination via 6-exo-dig cyclization in the presence of Zn(OTf)2 as the catalyst and tetrabutylammonium triflate salt as an additive under one-pot two-step reaction conditions. However, for nonracemic examples, ring-opening and cyclization steps were conducted under two-pot conditions. The reaction works well without any additional solvents. The final 3,4-dihydro-2H-1,4-oxazine products were obtained with 13 to 84% yield and 78 to 98% enantiomeric excess (for nonracemic examples).
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Gaurav Goswami
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
5
|
Ag 2O/squaramide cocatalyzed asymmetric interrupted Barton-Zard reaction of 8-nitroimidazo[1,2-a]pyridines. Sci Bull (Beijing) 2022; 67:1688-1695. [PMID: 36546048 DOI: 10.1016/j.scib.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
Abstract
Imidazo[1,2-a]pyridines are present in numerous biologically active compounds as the core structural motif. Herein, we report an asymmetric interrupted Barton-Zard reaction of electron-deficient imidazo[1,2-a]pyridines with α-substituted isocyanoacetates. The reaction enables the dearomatization of 8-nitroimidazo[1,2-a]pyridines and hence offers straightforward access to an array of optically active highly functionalized imidazo[1,2-a]pyridine derivatives that possess three contiguous stereogenic centers in good yields (up to 98%) with high stereoselectivities (>19:1 dr, >99% ee). It is worth noting that the catalytic system consisting of a chiral squaramide and silver oxide displays remarkable reactivity and stereoselectivity, and a gram-scale reaction is compatible with the catalyst loading of 0.5 mol%. In addition, the synthetic potential of this method was showcased by versatile transformations of the product.
Collapse
|
6
|
Xing S, Wang Y, Jin C, Shi S, Zhang Y, Liao Z, Wang K, Zhu B. Construction of Bridged Aza- and Oxa-[ n.2.1] Skeletons via an Intramolecular Formal [3+2] Cycloaddition of Aziridines and Epoxides with Electron-Deficient Alkenes. J Org Chem 2022; 87:6426-6431. [PMID: 35439001 DOI: 10.1021/acs.joc.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intramolecular formal [3+2] cycloaddition of activated aziridines and epoxides with electron-deficient alkene has been developed for the general and efficient construction of bridged aza- and oxa-[n.2.1] (n = 3 or 4) skeletons. This strategy can be efficiently promoted by lithium iodide. To demonstrate its potential, the intramolecular formal [3+2] cycloaddition was used to access the important intermediate of homoepiboxidine.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Changkun Jin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Shaochen Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yihui Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Ziya Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
7
|
Kishore DR, Goel K, Shekhar C, Satyanarayana G. An Access to Benzo[ a]fluorenes, Benzo[ b]fluorenes, and Indenes Triggered by Simple Lewis Acid. J Org Chem 2022; 87:2178-2203. [PMID: 35108008 DOI: 10.1021/acs.joc.1c02724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report illustrates BF3·OEt2 promoted intramolecular cascade cycloaromatization of 1,7-ynones toward synthesizing structurally diverse benzofluorene scaffolds. Remarkably, the present protocol promotes the formation of two consecutive C-C bonds intramolecularly and undergoes aromatization under mild reaction conditions to afford the tetracyclic benzo[a]fluorene frameworks. Besides, the formation of indenes was observed when 1-bromo-2-iodoarenes are relatively more electron-rich when compared with the one originating from the terminal arylacetylenes, under controlled conditions, wherein triple bond polarity has been just reversed due to the change of electronic effects exerted by the strong +M group of 1-bromo-2-iodoarenes, which is in conjugation to the connected triple bond. The same concept to generate indenes has also been extended by using aliphatic alkyne tethered ynones. Further, it was noticed that 1,7-ynones bearing the more electron-rich 1-bromo-2-iodoarenes than the arene ring arriving from the terminal arylacetylenes lead to benzo[b]fluorenes, under thermodynamic conditions, instead of delivering the benzo[a]fluorenes. In addition, this method features metal-free conditions, easily accessible starting materials, operational simplicity, gram-scale synthesis, and a wide range of substrate scopes.
Collapse
Affiliation(s)
- Dakoju Ravi Kishore
- Department of Chemistry, Indian Institute of Technology (IIT), Hyderabad Kandi 502 285, Sangareddy District, Telangana, India
| | - Komal Goel
- Department of Chemistry, Indian Institute of Technology (IIT), Hyderabad Kandi 502 285, Sangareddy District, Telangana, India
| | - Chander Shekhar
- Department of Chemistry, Indian Institute of Technology (IIT), Hyderabad Kandi 502 285, Sangareddy District, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT), Hyderabad Kandi 502 285, Sangareddy District, Telangana, India
| |
Collapse
|
8
|
Akhtar SMS, Bar S, Hajra S. Asymmetric aminoarylation for the synthesis of trans-3-amino-4-aryltetrahydroquinolines: An access to aza-analogue of dihydrexidine. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Cui H, Li J. Synthesis of Imidazo[2,3‐
a
]isoquinoline and Imidazo[3,2‐
a
]quinoline Derivatives with Ynones, Isoquinolines and Quinolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hai‐Lei Cui
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P.R. China
| | - Jia‐Qin Li
- Laboratory of Asymmetric Synthesis Chongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 P.R. China
| |
Collapse
|
10
|
Kishore DR, Shekhar C, Satyanarayana G. Lewis Acid Mediated Domino Intramolecular Cyclization: Synthesis of Dihydrobenzo[ a]fluorenes. J Org Chem 2021; 86:8706-8725. [PMID: 34110165 DOI: 10.1021/acs.joc.1c00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient and facile method for the regioselective synthesis of novel dihydrobenzo[a]fluorenes from readily accessible alkynols is presented. The current strategy triggers the formation of a dual C-C bond intramolecularly via Lewis acid catalysis under mild reaction conditions. Notably, secondary as well as tertiary alcohols bearing an alkyne moiety have been smoothly transformed into the corresponding products. As a result, novel tetracyclic dihydrobenzo[a]fluorenes have been accomplished using this approach.
Collapse
Affiliation(s)
- Dakoju Ravi Kishore
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi 502 285, Sangareddy District, Telangana, India
| | - Chander Shekhar
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi 502 285, Sangareddy District, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi 502 285, Sangareddy District, Telangana, India
| |
Collapse
|
11
|
Settipalli PC, Reddy YP, Gudise VB, Anwar S. Knoevenagel‐Friedel‐Crafts‐Hemiketalization Triple Cascade Reaction: A Diastereoselective Formal [1+2+3] Cyclization Towards Indenonaphthopyran Scaffolds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Poorna Chandrasekhar Settipalli
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| | - Yeruva Pavankumar Reddy
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| | - Veera Babu Gudise
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| | - Shaik Anwar
- Division of Chemistry Department of Sciences and Humanities Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi, Guntur - 522 213 Andhra Pradesh India
| |
Collapse
|
12
|
Li Y, Chen F, Zhu S, Chu L. Photoinduced triiodide-mediated [3 + 2] cycloaddition of N-tosyl aziridines and alkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A photoinduced triiodide-mediated [3 + 2] cycloaddition of N-Ts aziridines and alkenes is described herein. This operationally simple protocol enables regioselective access to a wide range of substituted pyrrolidines under mild-free conditions.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
13
|
Abstract
Multiheteroatom-containing small-sized cyclic molecules such as 2-
iminothiazolidines are often found to possess beneficial pharmacological properties. In this
review article, the biological significance of 2-iminothiazolidines is discussed and the literature
reports published in the last 15 years spanning from 2006 to 2020 describing various
preparative routes to access 2-iminothiazolidine derivatives have been categorically and
chronologically described. The notable synthetic methods discussed here involve ringexpansion
transformations of nonactivated and activated aziridines, thiiranes, epoxides, and
other miscellaneous reactions.
Collapse
Affiliation(s)
- Aditya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| |
Collapse
|