1
|
Vyhivskyi O, Baudoin O. Total Synthesis of the Diterpenes (+)-Randainin D and (+)-Barekoxide via Photoredox-Catalyzed Deoxygenative Allylation. J Am Chem Soc 2024; 146. [PMID: 38618944 PMCID: PMC11046436 DOI: 10.1021/jacs.4c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
We report the first enantioselective total synthesis of diterpenoid randainin D, which possesses a hydroazulenone core with a β-substituted butenolide moiety on the cycloheptane ring. The trans-5/7 ring system was formed via a highly challenging ring-closing metathesis delivering the tetrasubstituted cycloheptenone. The butenolide moiety was installed via a novel deoxygenative allylation under Ir-photoredox catalysis, employing methyl oxalate as a red/ox tag. Moreover, the developed allylation was successfully utilized in the 7-step total synthesis of (+)-barekoxide. This study suggests that this deoxygenative allylation method is a promising strategy for the formation of Cq-C(sp3) bonds (Cq = quaternary center) in the context of natural product synthesis.
Collapse
Affiliation(s)
- Oleksandr Vyhivskyi
- Department of Chemistry, University
of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Olivier Baudoin
- Department of Chemistry, University
of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Abstract
The first and asymmetric total syntheses of rhodomollins A and B, two rhodomollane type grayanoids featuring a d-homograyanane carbon skeleton and an oxa-bicyclo[3.2.1] core, were accomplished via a convergent strategy. A Stille coupling and a lithium-halogen exchange/intramolecular nucleophilic addition to the aldehyde sequence were employed to assemble two enantioenriched fragments. The oxa-bicyclo[3.2.1] core was achieved through an intramolecular SN2 substitution of cyclic sulfate of 1,2-diols (Williamson ether synthesis). The A ring oxidation states were adjusted by a Payne/Meinwald rearrangement sequence and subsequent redox transformations.
Collapse
Affiliation(s)
- Weizhao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Duo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
3
|
Abstract
Mollanol A is the first isolated member of the mollane-type grayanoids which possesses an unprecedented C-nor-D-homograyanane carbon skeleton and an 5,8-epoxide. Due to its transcriptional activation effects on the Xbp1 upstream promoters in different cell types, it has a potential therapeutic effect on inflammatory bowel disease. Here we report the first total synthesis of mollanol A, which constitutes a 15-step synthesis from commercially available materials via a convergent strategy. The synthesis involves an InCl3-catalyzed Conia-ene cyclization reaction to construct the bicyclo[3.2.1]octane moiety and a vinylogous aldol reaction/intramolecular oxa-Michael addition sequence to rapidly assemble the oxa-bicyclo[3.2.1] core.
Collapse
Affiliation(s)
- Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Rong Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
4
|
Rhodauricanol A, an analgesic diterpenoid with an unprecedented 5/6/5/7 tetracyclic system featuring a unique 16-oxa-tetracyclo[11.2.1.01,5.07,13]hexadecane core from Rhododendron dauricum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sinast M, Claasen B, Stöckl Y, Greulich A, Zens A, Baro A, Laschat S. Synthesis of Highly Functionalized Hydrindanes via Sequential Organocatalytic Michael/Mukaiyama Aldol Addition and Telescoped Hydrozirconation/Cross-Coupling as Key Steps: En Route to the AB System of Clifednamides. J Org Chem 2021; 86:7537-7551. [PMID: 34014095 DOI: 10.1021/acs.joc.1c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AB ring systems of the clifednamide family, polycyclic tetramate macrolactames (PoTeMs), were prepared by a new, convergent approach employing an intramolecular Diels-Alder (IMDA) reaction. Key steps comprise an organocatalytic Michael addition (>90% enantiomeric excess (ee)), a Mukaiyama aldol reaction for the convergent installation of a diene moiety, and a telescoped hydrozirconation/cross-coupling grafting an enone. The following IMDA furnished a highly functionalized hydrindane (diastereomeric ratio (dr) = 91:1) with the same configuration as the clifednamide scaffold. Advantages of this route are only one required protecting group, 13% overall yield over 9 steps (reduced from previously 17 steps/1.3% overall), and the potential access to the key intermediates in the clifednamide biosynthesis.
Collapse
Affiliation(s)
- Moritz Sinast
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yannick Stöckl
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Greulich
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Man Y, Zhou C, Fu S, Liu B. Synthetic Study Aiming at the Tricyclic Core of 12- epi-JBIR-23/24. Org Lett 2021; 23:3151-3156. [PMID: 33826342 DOI: 10.1021/acs.orglett.1c00853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic study toward highly enantio- and diastereoselective synthesis of the tricyclic framework of 12-epi-JBIR-23/24, a natural product analogue showing inhibitory activity against four malignant pleural mesothelioma cell lines, is presented herein. In this synthesis, a rhodium-catalyzed asymmetric three-component Michael/aldol reaction introduces three consecutive tertiary carbon centers, while the unique epoxyquinol core motif is successfully forged via [3,3]-sigmatropic rearrangement of an allylic xanthate, vinylogous Pummerer rearrangement, and a selective mesylation/epoxidation cascade of a triol.
Collapse
Affiliation(s)
- Yi Man
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Kawamoto Y, Karube F, Kobayashi T, Ito H. Stereocontrolled asymmetric synthesis of mollebenzylanols A and B using Claisen rearrangements. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|