1
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
2
|
Li FY, Xiao Y, Huang DW, Luo M, Li L, Xu H, Wang B, Wang JY. Facile Construction of Benzo[ d][1,3]oxazocine: Reductive Radical Dearomatization of N-Alkyl Quinoline Quaternary Ammonium Salts. Org Lett 2024; 26:1996-2001. [PMID: 38436281 DOI: 10.1021/acs.orglett.3c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Reductive radical dearomatization N-alkyl quinoline quaternary ammonium salts to synthesize structurally complex and challenging polysubstituted benzo[d][1,3]oxazocines was first reported. The mechanism showed various allyl alcohols can be converted into alkyl radicals under reduction conditions of iron/silane. These radicals then nucleophilically attack the C4 site of N-alkyl quinoline quaternary ammonium salts, and intramolecular cyclization of the resulting intermediate generates the target product. This method not only produced a series of novel polysubstituted benzo[d][1,3]oxazocines but also prepared polycyclic benzo[d][1,3]oxazocines. Finally, this strategy made up for the lack of reductive radical reports on N-alkylquinolinium salts and also had the advantages of mild reaction conditions, wide substrate range, and novel product structure.
Collapse
Affiliation(s)
- Fu-Yu Li
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Xiao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Dong-Wei Huang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Meng Luo
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Lu Li
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Hong Xu
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
3
|
Dhak MS, Arunprasath D, Argent SP, Cuthbertson JD. A Domino Radical Amidation/Semipinacol Approach to All-Carbon Quaternary Centers Bearing an Aminomethyl Group. Chemistry 2023; 29:e202300922. [PMID: 37278542 PMCID: PMC10947466 DOI: 10.1002/chem.202300922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
A photoredox-mediated radical amidation ring-expansion sequence that enables the generation of all-carbon quaternary centers bearing a protected aminomethyl substituent is described. The methodology can be applied to both styrene and unactivated alkene substrates generating structurally diverse sp3 -rich amine derivatives in a concise manner.
Collapse
Affiliation(s)
- Mandeep S. Dhak
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham, Jubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Dhanarajan Arunprasath
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham, Jubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - James D. Cuthbertson
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham, Jubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
4
|
Liu F, Cheng Z, Fang Y, Wang X, Zhao L, Rong ZQ. Metal-Catalyst-Controlled Divergent Synthesis of γ-Butyrolactones via Intramolecular Coupling of Epoxides with Alcohols. Org Lett 2023; 25:3618-3622. [PMID: 37184068 DOI: 10.1021/acs.orglett.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A metal-controlled divergent protocol for the synthesis of α- and β-substituted γ-butyrolactones was developed through intramolecular coupling of epoxides with alcohols. This method provides an efficient and practicable way to afford γ-butyrolactones with good efficiency, excellent regioselectivity, and broad substrate scope.
Collapse
Affiliation(s)
- Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zifan Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
5
|
Gharpure S, Chavan R, Ardhapure A. Iron‐Catalyzed Reductive Cyclization of Alkenyl Vinylogous Carbonates for Stereoselective Synthesis of Substituted Tetrahydrofurans, Tetrahydropyrans and Chromans. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Hua TB, Ma YH, He XY, Wang L, Yan JY, Yang QQ. A formal [4 + 1] cycloaddition reaction of Baylis–Hillman bromides with sulfur ylides: facile access to α-alkenyl lactones. Org Chem Front 2022. [DOI: 10.1039/d2qo00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal [4 + 1] cycloaddition reaction of Baylis–Hillman adducts with sulfur ylides has been developed for the first time.
Collapse
Affiliation(s)
- Ting-Bi Hua
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Jia-Ying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
7
|
Xie Y, Feng H, Qi Y, Huang J, Huang L. Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. J Org Chem 2021; 86:16940-16947. [PMID: 34726412 DOI: 10.1021/acs.joc.1c02099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.
Collapse
Affiliation(s)
- Yujuan Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yayu Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
8
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
9
|
Xie Y, Huang W, Qin S, Fu S, Liu B. Catalytic radical cascade cyclization of alkene-tethered enones to fused bicyclic cyclopropanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01312b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused bicyclic cyclopropanols were achieved via an unprecedented HAT-triggered radical cascade reaction of alkene-tethered enones in the presence of an iron catalyst.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Wei Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
10
|
Zhang H, Wang B, Xu H, Li FY, Wang JY. Synthesis of naphthodihydrofurans via an iron( iii)-catalyzed reduction radical cascade reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01041g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient method for the synthesis of naphthodihydrofurans has been developed by iron(iii)-catalyzed cascade reaction of reducing radicals.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Xu
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Yu Li
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|