1
|
Li WD, Fan J, Li CJ, Shi XY. Recent advances in carboxyl-directed dimerizations and cascade annulations via C-H activations. Chem Commun (Camb) 2025; 61:3967-3985. [PMID: 39945206 DOI: 10.1039/d4cc06722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
C-H functionalization provides an efficient route to construct complex organic molecules. The introduction of directing groups enhances the site-selectivity of the reaction. Carboxyl as a directing group can be easily transformed into other functional groups afterwards. Due to its good reactivity, it can undergo cascade annulation reactions to build valuable heterocycle skeletons in one pot. Moreover, carboxyl can easily be removed via decarboxylation, which allows it to serve as a unique traceless directing group in C-H functionalization. These characteristics make carboxyl a promising directing group, which is superior to nitrogen-containing compounds with strong coordination ability to a certain extent. This feature article reviews the applications of carboxyl as a classical directing group and a unique traceless-directing group in cascade annulation reactions to access diverse carbocycles and heterocycles.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada.
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
2
|
Li WD, Wang X, Ma HY, Jia JW, Xiao YY, Shi XY. Additive-Controlled Divergent Synthesis of Fluorenone-4-carboxylic Acids and Diphenic Anhydrides via Rhodium-Catalyzed Oxidative Dimeric Cyclization of Aromatic Acids. Org Lett 2024; 26:7607-7613. [PMID: 39231445 DOI: 10.1021/acs.orglett.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A rhodium-catalyzed one-pot access to valuable polycyclic frameworks of fluorenone-4-carboxylic acids and diphenic anhydrides via the oxidative dimeric cyclization of aromatic acids has been developed. This transformation proceeded via carboxyl-assisted 2-fold C-H activation followed by intramolecular Friedel-Crafts or dehydration reactions. The silver salt additive plays a vital role in the chemoselectivity of the products. Diphenic anhydride 3l exhibits a maximum fluorescence quantum yield of up to 59%.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Hong-Yu Ma
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Jing-Wen Jia
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Yu-Yao Xiao
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
3
|
Li WD, Zhang PJ, Jia JW, Zhang XY, Ma HY, He KX, Dang DF, Jiao J, Shi XY. Oxidative Tandem Cyclization of Aromatic Acids with (Benzo)thiophenes: One-Pot Access to Planar Sulfur-Containing Polycyclic Heteroarenes for Lipid-Droplet-Targeted Probes. Org Lett 2024; 26:4857-4862. [PMID: 38838191 DOI: 10.1021/acs.orglett.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The efficient construction of π-conjugated polycyclic heteroarenes represents a significant task in the field of functional materials. A one-step oxidative tandem cyclization of aromatic acids with (benzo)thiophenes was developed to access planar sulfur-containing polycyclic heteroarenes. This protocol undergoes intermolecular cross-dehydrogenative coupling followed by intramolecular Friedel-Crafts acylation and provides a facile pathway to planar polycyclic compounds from inexpensive reactants. The synthesized heteroarenes serving as lipid-droplet-targeted probes exhibit outstanding performance with favorable biocompatibility and photostability.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Pei-Juan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jing-Wen Jia
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xiao-Yong Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Hong-Yu Ma
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Kai-Xin He
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Dong-Feng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
4
|
Zhang M, Chen L, Sun H, Liu Z, Huang J, Yu F. Synthesis of Tetrahydro-indolones through Rh(III)-Catalyzed [3 + 2] Annulation of Enaminones with Iodonium Ylides. Org Lett 2023; 25:7298-7303. [PMID: 37787679 DOI: 10.1021/acs.orglett.3c02515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
An unprecedented protocol for a Rh(III)-catalyzed [3 + 2] annulation from simple and readily available enaminones and iodonium ylides has been developed. The novel strategy allows for access to a new class of structurally diverse tetrahydro-indolones with high efficiency and a broad substrate scope. In addition, this transformation represents the first example of the selective Rh(III)-catalyzed alkenyl C-H bond functionalization and annulation of enaminones. Finally, the potential applications of this protocol are demonstrated through gram-scale reaction and late-stage modification.
Collapse
Affiliation(s)
- Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Haifeng Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
5
|
Chen J, Suleman M, Lu P, Wang Y. Rh(III)-catalyzed cascade annulation of 4-diazoisoquinolin-3-ones with benzoic acids to access spiro[isobenzofuran-1,4′-isoquinoline]-3,3′-diones. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Ramesh G, Ramulu BV, Balamurugan R. Activation of o-Propargyl Alcohol Benzaldehydes under Acetalization Conditions for Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement. J Org Chem 2022; 87:8633-8647. [PMID: 35687605 DOI: 10.1021/acs.joc.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity of o-propargyl alcohol benzaldehydes has been increased tremendously toward Brønsted acid-catalyzed intramolecular electrophile intercepted Meyer-Schuster (M-S) rearrangement under acetalization conditions using trimethyl orthoformate (TMOF). The in situ formed acetal transfers the methoxy group intramolecularly to generate the M-S intermediate in even less reactive substrates, and the formed oxocarbenium ion makes the carbonyl more electrophilic for an effective intramolecular trapping of the M-S intermediate to furnish the indanone derivatives.
Collapse
Affiliation(s)
- Golla Ramesh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
8
|
Yu S, Hong C, Liu Z, Zhang Y. Synthesis of Pyranones: Ru-Catalyzed Cascade Reaction via Vinylic C-H Addition to Glyoxylate. Org Lett 2022; 24:4871-4875. [PMID: 35770909 DOI: 10.1021/acs.orglett.2c01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficient synthesis of pyranones is presented by a three-component cascade reaction from readily available acrylic acids, ethyl glyoxylate, and p-toluenesulfonamide under ruthenium catalysis. For the first time, the nucleophilic addition of the vinylic C-H bond of acrylic acids across aldehyde is achieved, and the intramolecular cyclization as well as subsequent second insertion to aldehyde form the substituted butenolides. The elimination of sulfonamides occurs at higher temperature to give the pyranones.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Hong C, Yu S, Liu Z, Zhang Y. Rh-Catalyzed Coupling of Acrylic/Benzoic Acids with α-Diazocarbonyl Compounds: An Alternative Route for α-Pyrones and Isocoumarins. Org Lett 2022; 24:815-820. [PMID: 35019648 DOI: 10.1021/acs.orglett.1c03992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coupling of acrylic acids/benzoic acids with α-diazocarbonyl compounds has been realized by a combined catalytic system of rhodium catalyst and Zn(OAc)2 additive. The presence of Zn(OAc)2 obviously accelerates the C(sp2)-H activation and destructed the formation of carboxylic ester that is formed via a nucleophilic O-H insertion to metal carbenoid. The procedure featured mild reaction conditions and broad substrate scope, providing a straightforward approach to the synthesis of α-pyrones and isocoumarins without the transformation of carboxylic acids to the corresponding amides.
Collapse
Affiliation(s)
- Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Li Q, Wei M. DFT studies on rhodium( iii)-catalyzed synthesis of indanones from N-methoxybenzamides via C–H activation reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj02599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(iii)-catalyzed reaction of N-methoxybenzamides with β-trifluoromethyl-α,β-unsaturated ketones to produce different products under different conditions.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing 100083, P. R. China
| | - Meiju Wei
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing 100083, P. R. China
| |
Collapse
|
11
|
Singh S, Trivedi L, Vasudev PG, Passarella D, Negi AS. An Efficient Merging of DBU/Enolate and DBU/Benzyl Bromide Organocycles for the Synthesis of alpha Benzylated1-Indanone Derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merging of dual organocycles of the bicyclic amidine base 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) was demonstrated for the synthesis of alpha benzylated 1-indanones. A highly reactive enolate intermediate was formed in the...
Collapse
|
12
|
Yu S, Hong C, Liu Z, Zhang Y. Cobalt-Catalyzed Vinylic C-H Addition to Formaldehyde: Synthesis of Butenolides from Acrylic Acids and HCHO. Org Lett 2021; 23:8359-8364. [PMID: 34652922 DOI: 10.1021/acs.orglett.1c03095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A carboxyl-assisted C-H functionalization of acrylic acids with formaldehyde to give butenolides is described. It is the first time that the addition of an inert vinylic C-H bond to formaldehyde has been achieved via cobalt-catalyzed C-H activation. The unique reactivity of the cobalt species was observed when compared with related Rh or Ir catalysts. γ-Hydroxymethylated butenolides were produced by the treatment of Na2CO3 after the catalytic reaction in one pot.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Fu Y, Zhao X, Chen D, Luo J, Huang S. Cu-catalyzed coupling of indanone oxime acetates with thiols to 2,3-difunctionalized indenones. Chem Commun (Camb) 2021; 57:10719-10722. [PMID: 34581714 DOI: 10.1039/d1cc04167c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Cu-catalyzed coupling reaction of indanone oxime acetates with thiols has been developed for the synthesis of 2,3-functionalized 1-indenones. This protocol has several features including easy mild reaction conditions, stabilized enamine products, good tolerance of functional groups, and no external oxidants. This reaction enables direct derivatization on the indanone ring to provide valuable functionalized indenones at room temperature.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
14
|
Meng X, Chen D, Liu R, Jiang P, Huang S. Synthesis of 2-(Cyanomethyl)benzoic Esters via Carbon-Carbon Bond Cleavage of Indanones. J Org Chem 2021; 86:10852-10860. [PMID: 34313443 DOI: 10.1021/acs.joc.1c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel synthesis of 2-(cyanomethyl)benzoic esters from indanone derivatives has been established. This reaction proceeds via a deprotonation of alcohols with a chemical base, followed by a nucleophilic addition to indanones and Beckmann fragmentation. In addition, this reaction could also work under electrochemical conditions, and no external chemical bases were needed. This mild method offers a novel strategy for the late-stage functionalization of various natural alcohols.
Collapse
Affiliation(s)
- Xiangtai Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Rui Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
15
|
Yu S, Hong C, Liu Z, Zhang Y. Synthesis of Cyclopentenones through Rhodium-Catalyzed C-H Annulation of Acrylic Acids with Formaldehyde and Malonates. Org Lett 2021; 23:5054-5059. [PMID: 34151579 DOI: 10.1021/acs.orglett.1c01569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient rhodium-catalyzed protocol for the synthesis of cyclopentenones based on a three-component reaction of acrylic acids, formaldehyde, and malonates via vinylic C-H activation is reported. Exploratory studies showed that 5-alkylation of as-prepared cyclopentenones could be realized smoothly by the treatment of a variety of alkyl halides with a Na2CO3/MeOH solution. Excess formaldehyde and malonate led to a multicomponent reaction that afforded the multisubstituted cyclopentenones through a Michael addition.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Huang L, Xie Y, Ge P, Huang J, Feng H. Glyoxylic Acid: A Carboxyl Group‐Assisted Metal‐Free Decarboxylative Reaction Toward Propargylamines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Yujuan Xie
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Panyuan Ge
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry Shanghai 201203 China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| |
Collapse
|
17
|
Bhattacharya T, Ghosh A, Maiti D. Hexafluoroisopropanol: the magical solvent for Pd-catalyzed C-H activation. Chem Sci 2021; 12:3857-3870. [PMID: 34163654 PMCID: PMC8179444 DOI: 10.1039/d0sc06937j] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Among numerous solvents available for chemical transformations, 1,1,1,3,3,3-hexafluoro-2-propanol (popularly known as HFIP) has attracted enough attention of the scientific community in recent years. Several unique features of HFIP compared to its non-fluoro analogue isopropanol have helped this solvent to make a difference in various subdomains of organic chemistry. One such area is transition metal-catalyzed C-H bond functionalization reactions. While, on one side, HFIP is emerging as a green and sustainable deep eutectic solvent (DES), on the other side, a major proportion of Pd-catalyzed C-H functionalization is heavily relying on this solvent. In particular, for distal aromatic C-H functionalizations, the exceptional impact of HFIP to elevate the yield and selectivity has made this solvent irreplaceable. Recent research studies have also highlighted the H-bond-donating ability of HFIP to enhance the chiral induction in Pd-catalyzed atroposelective C-H activation. This perspective aims to portray different shades of HFIP as a magical solvent in Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
18
|
Liu H, Lin ML, Chen YJ, Huang YH, Dong L. Rh( iii)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00779c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed three-component C–H bond functionalization protocol has been successfully applied to access complex polycyclic BINOL derivatives in which the formation of intermediate amides occurred in situ from aldehydes and amines.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Jun Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Hui Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Das S, Dutta A. Recent advances in transition-metal-catalyzed annulations for the construction of a 1-indanone core. NEW J CHEM 2021. [DOI: 10.1039/d0nj06318e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metal-catalyzed carbon–carbon bond forming reactions are a well accepted strategy for the synthesis of organic compounds. This review gives a brief update on the transition-metal-catalyzed annulations to construct 1-indanone scaffolds.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry
- Rishi Bankim Chandra College for Women
- Naihati
- India
| | - Arpita Dutta
- Department of Chemistry
- Rishi Bankim Chandra Evening College
- Naihati
- India
| |
Collapse
|
20
|
John SE, Gulati S, Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org Chem Front 2021. [DOI: 10.1039/d0qo01480j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes the recent developments in MCRs, incorporating different strategies along with their mechanistic aspects.
Collapse
Affiliation(s)
- Stephy Elza John
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Shivani Gulati
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| |
Collapse
|
21
|
Liang X, Xiong M, Zhu H, Shi K, Zhou Y, Pan Y. Copper/Palladium Bimetallic System for the Synthesis of Isobenzofuranones through [4 + 1] Annulation between Propiophenones and Benzoic Acids. Org Lett 2020; 22:9568-9573. [DOI: 10.1021/acs.orglett.0c03627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Mingteng Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Keqiang Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yifeng Zhou
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|