1
|
Ma X, Zhu Y, Chen Y, Yan X, Zhang M. TM-free full utilization of S atoms: synthesis of thioethers from disulfides and quaternary ammonium salts. Org Biomol Chem 2025; 23:3590-3594. [PMID: 40110641 DOI: 10.1039/d5ob00011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Disulfides are commonly used as alternatives of thiols; however, the full utilization of both S atoms of disulfides under TM-, oxidant/reductant-free conditions is still challenging. In this study, an efficient synthesis of thioethers from disulfides and quaternary ammonium salts under TM-, oxidant/reductant-free conditions has been developed. Both S atoms of disulfides can be transformed into thioether products, thus improving sulfur resource utilization. The method can be easily extended to the synthesis of valuable alkyl dithiocarbamates and can be readily scaled up to the gram scale, showing good practicality value.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yingying Zhu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yuying Chen
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xiaoyu Yan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Mengcheng Zhang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
2
|
Yu Q, Jiang X. Unilateral and Bilateral Disulfurating Reagents for the Synthesis of Unsymmetrical Polysulfides. Chemistry 2025; 31:e202404029. [PMID: 39821407 DOI: 10.1002/chem.202404029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Polysulfides play an essential role across various fields, including life sciences, pharmaceuticals, food science, and materials science. However, the controlled sequential installation of groups at both ends of an S-S motif poses enormous challenges due to the reversible nature of the covalent S-S bond. Utilizing unique disulfide reagents presents one of the most straightforward approaches for constructing diverse polysulfides. This concept highlights the initiatives and advancements in polysulfide synthesis facilitated by unilateral or bilateral disulfide reagents. Furthermore, ongoing research is focused on recently reported methodologies for synthesizing unsymmetrical disulfides.
Collapse
Affiliation(s)
- Qing Yu
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Liu W, Wang J, Song G. A facile, catalyst- and additive-free, and scalable approach to the photochemical preparation of disulfides from organosulfenyl chlorides. RSC Adv 2024; 14:32200-32205. [PMID: 39399260 PMCID: PMC11467717 DOI: 10.1039/d4ra04568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
A novel, clean and efficient protocol for the preparation of disulfides has been developed through the photochemical radical homo- and cross-coupling reaction of sulfenyl chlorides under LED irradiation and without the use of any catalyst and additive. The representative photochemical homo-coupling of trichloromethyl sulfenyl chloride has been successfully conducted on kilogram-scale in a continuous flow mode. The solvent and the main byproduct can be recovered in high yields, which makes the approach be highly atom economical.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
- State Key Laboratory of Fluorine-containing Functional Membrane Materials Shandong 256400 P. R. China
| | - Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
4
|
Yu Q, Zhang X, Jiang X. Bilateral Unsymmetrical Disulfurating Reagent Design for Polysulfide Construction. Angew Chem Int Ed Engl 2024; 63:e202408158. [PMID: 38923731 DOI: 10.1002/anie.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Polysulfides are significant compounds in life science, pharmaceutical science, and materials science. Therefore, polysulfide construction is in great demand. The controllable sequential installation of groups on both ends of a S-S motif faces an enormous challenge owing to the reversible nature of the covalent S-S bond. A library was established with two divergent mask groups for bilateral unsymmetrical disulfurating reagents (R1O-SS-SO2R2). Sequential coupling with preferential activation of the S-SO2 bond (37.6 kcal/mol) and controllable activation of the S-O bond (54.8 kcal/mol) in the presence of the S-S bond (62.0 kcal/mol) enabled successive reactions at each end of the S-S motif to afford unsymmetrical disulfides and trisulfides, even for the cross-linkage of natural products, pharmaceuticals, peptides, and a protein (bovine serum albumin).
Collapse
Affiliation(s)
- Qing Yu
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - XiangJin Zhang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Liang S, Ma L, Guo Z, Liu F, Lin Z, Yi W. Synthesis of Unsymmetrical Trisulfides from S-Substituted Sulphenylthiosulphates. Angew Chem Int Ed Engl 2024; 63:e202404139. [PMID: 38689425 DOI: 10.1002/anie.202404139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Trisulfide unit is widely found in natural products and has garnered attention due to the unique pharmacological and physiochemical properties. However, despite limited progress, widely applicable approaches for constructing unsymmetrical trisulfides have so far remain scarce. In this work, an easy-to-prepare, solid-state and scalable reagent, S-substituted sulphenylthiosulphate, has been developed for the divergent synthesis of unsymmetrical trisulfides. Alkyl electrophile substrates, including bromides, chlorides, iodides and tosylates, with diverse substituents are smoothly converted to the corresponding trisulfides with S-substituted sulphenylthiosulphates and thiourea as another sulfur source. Furthermore, the late-stage modification of drug molecules was successfully achieved through this method.
Collapse
Affiliation(s)
- Shuaishuai Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Liye Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanmin Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zijian Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
Li B, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Copper-Catalyzed Chemoselective Coupling of N-Dithiophthalimides and Alkyl Halides: Synthesis of Unsymmetrical Disulfides and Sulfides. Org Lett 2024; 26:3634-3639. [PMID: 38660998 DOI: 10.1021/acs.orglett.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this paper, we report an unprecedented copper-catalyzed disulfides or sulfides coupling reaction involving unactivated alkyl halides and N-dithiophthalimides. This reaction can be conducted under mild conditions using low-cost metal catalysts and exhibits high chemical selectivity and functional group compatibility, enabling the efficient assembly of various sulfides and disulfides.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
8
|
Yu Y, Chen J, Huang M, Jiang Y, Zhou X, Wang J, Li J, Cao H. Transition-Metal-Free Disulfuration of Amides with Trisulfide Dioxides via Formation of Unaccessible S-S-N Bonds. J Org Chem 2024; 89:3590-3596. [PMID: 38364441 DOI: 10.1021/acs.joc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Under transition-metal-free conditions, trisulfide dioxides were used as disulfurating reagents to react with a wide range of amides, affording various substituted N-disulfanyl amides in good yields. Furthermore, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Mingzhou Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| |
Collapse
|
9
|
Yu Y, Zhou X, Wang J, Jiang Y, Cao H. Construction of β-Acetoxy or β-Hydroxyl Disulfides via Highly Regioselective Ring-Opening of Epoxides with Acetyl Masked Disulfide Nucleophiles. Org Lett 2023. [PMID: 38054746 DOI: 10.1021/acs.orglett.3c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In the organic or water phase, acetyl masked disulfide nucleophiles were used as the disulfide source to react with a wide range of epoxides, affording various β-acetoxy or β-hydroxyl disulfides in good yields with high regioselectivity. This method features transition-metal-free, simple experimental conditions, high atom economy, and scalable potential, which make it attractive and practical.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| |
Collapse
|
10
|
Yang K, Luo Y, Hu Q, Song M, Liu J, Li Z, Li B, Sun X. Selective C(sp 3)-S Bond Cleavage of Thioethers to Build Up Unsymmetrical Disulfides. J Org Chem 2023; 88:13699-13711. [PMID: 37747962 DOI: 10.1021/acs.joc.3c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mengjie Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
11
|
Cao M, Yang D, Adhikari A, Ye F, Zheng C, Yan W, Meng S, Su P, Shen B. Neogrisemycin, a Trisulfide-Bridged Angucycline, Produced upon Expressing the Thioangucycline Biosynthetic Gene Cluster in Streptomyces albus J1074. Org Lett 2023; 25:961-965. [PMID: 36735280 PMCID: PMC10115141 DOI: 10.1021/acs.orglett.2c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neogrisemycin (1) was isolated from recombinant Streptomyces albus J1074 strain SB4061 expressing an engineered thioangucycline (TAC) biosynthetic gene cluster (BGC). The structure and absolute configuration of 1 were established by a combination of mass spectrometry, nuclear magnetic resonance, and single-crystal X-ray diffraction analyses. Like the TACs, 1 was also proposed to derive non-enzymatically from the common epoxide (8), the nascent product encoded by the tac BGC, mediated by endogenous hydrogen trisulfide.
Collapse
Affiliation(s)
| | | | - Ajeeth Adhikari
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | | | | | | | | | | | - Ben Shen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
12
|
Wang D, Li W, Shi K, Pan Y. LiBr-Catalyzed C3-Disulfuration between Indole and N-Dithiophthalimide. J Org Chem 2023; 88:2550-2556. [PMID: 35043626 DOI: 10.1021/acs.joc.1c02556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple, green halide-catalyzed protocol for disulfuration of indole derivatives with N-dithiophthalimides has been developed. This C-H disulfide reaction proceeded smoothly at room temperature with economical LiBr as catalyst, providing an effective method for the synthesis of novel unsymmetrical disulfides. A series of 3-dithioindole derivatives were obtained in high yields with good functional group tolerance; moreover, the wide scope of Harpp reagents (aryl, benzyl, primary, secondary, tertiary) confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Dungai Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Keqiang Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
13
|
Lao T, Chen J, Zhou X, Zhang Z, Cao G, Su Z, Yu Y, Cao H. Visible-light-induced synthesis of N-disulfanyl indoles, pyrroles or carbazoles via the construction of stable S-S-N bonds. Chem Commun (Camb) 2023; 59:458-461. [PMID: 36519391 DOI: 10.1039/d2cc04616d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and efficient visible-light-induced approach for the formation of stable S-S-N bonds has been developed. Through these photocatalytic reactions, a series of N-disulfanyl indoles, pyrroles and carbazoles were afforded with good to excellent yields. Moreover, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Gao Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Zhengquan Su
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China. .,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
14
|
Wu S, Hu D, Wan X, Zhao J, He Q, Su Z, Cao H. Photocatalytic C-H Disulfuration for the Preparation of Indolizine-3-disulfides. J Org Chem 2022; 87:16297-16306. [PMID: 36417299 DOI: 10.1021/acs.joc.2c01871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photocatalytic C-H disulfuration of indolizines was developed, giving an approach to a wide variety of indolizine-3-disulfides with good yields. Trisulfide dioxides were explored as a high-efficient disulfuration reagent. This disulfuration reaction could be scaled up to grams. Mechanistic studies support a photoinduced pathway involving the generation of indolizine cationic radicals. A bulky alkyl substituent on terminal sulfur of trisulfide dioxide A was necessary for selective formation of disulfide over monosulfide.
Collapse
Affiliation(s)
- Songxin Wu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dangzhong Hu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xuegui Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
15
|
Németh AG, Szabó R, Németh K, Keserű GM, Ábrányi-Balogh P. A stepwise one-pot synthesis of aliphatic thiols and their derivatives from acrylamides and sulfur. Org Biomol Chem 2022; 20:4361-4368. [PMID: 35575267 DOI: 10.1039/d2ob00512c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elemental sulfur enables the convenient formation of C-S bonds and the direct incoporation of S-S bonds. The reactivity of easily accessible electron deficient alkenes towards sulfur, however, is barely disclosed. Herein, we investigated the reactivity of acrylamides with sulfur and eventually developed a new pseudo-multicomponent reaction for the preparation of polysulfides. Sequential one-pot reduction led to diversely substituted thiols. Additional third stage one-pot modifications provided thioethers, unsymmetric disulfide and thioester.
Collapse
Affiliation(s)
- András Gy Németh
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Renáta Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Krisztina Németh
- MS Metabolomics Research Laboratory, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - György M Keserű
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Péter Ábrányi-Balogh
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
16
|
Efficient preparation of unsymmetrical disulfides by nickel-catalyzed reductive coupling strategy. Nat Commun 2022; 13:2588. [PMID: 35546155 PMCID: PMC9095708 DOI: 10.1038/s41467-022-30256-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Disulfides are widely found in natural products and find a wide range of applications in life sciences, materials chemistry and other fields. The preparation of disulfides mainly rely on oxidative couplings of two sulfur containing compounds. This strategy has many side reactions and other shortcomings. Herein, we describe the reductive nickel-catalyzed cross-electrophile coupling of unactivated alkyl bromides with symmetrical alkyl- and aryltetrasulfides to form alkyl-alkyl and aryl-alkyl unsymmetrical disulfides. This approach for disulfide synthesis is practical, relies on easily available, unfunctionalized substrates, and is scalable. We investigated the mechanism of this transformation and found that the tetrasulfide compound does not selectively break the central S–S bond, but regio-selectively generates trisulfide intermediates. The preparation of disulfides mainly relies on oxidative couplings of two sulfur-containing compounds, a strategy which has side reactions and other shortcomings. In this work, the authors present a reductive nickel-catalyzed cross-electrophile coupling of unactivated alkyl bromides with symmetrical tetrasulfides to form unsymmetrical disulfides, proceeding via trisulfide intermediates.
Collapse
|
17
|
Chen Y, Sheng D, Wang F, Rao W, Shen SS, Wang SY. Nickel( ii)/TPMPP catalyzed reductive coupling of oxalates and tetrasulfides: synthesis of unsymmetric disulfides. Org Chem Front 2022. [DOI: 10.1039/d2qo00945e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni(ii)/TPMPP-catalyzed reductive cross-coupling reaction of benzyl oxalates and tetrasulfides to synthesize unsymmetric disulfides is reported.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Ma YT, Lin C, Huang X, Liu M, Zhou YB, Wu H. (NH4)2S2O8-Promoted cross-coupling of thiols/diselenides and sulfoxides for the synthesis of unsymmetrical disulfides/selenosulfides. Chem Commun (Camb) 2022; 58:6550-6553. [DOI: 10.1039/d2cc01344d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(NH4)2S2O8-Promoted cross-coupling of thiols/diselenides and sulfoxides to construct unsymmetrical disulfides/selenosulfides is disclosed. Control experiments demonstrate that (NH4)2S2O8 acts as an acid and an oxidant while both ionic and radical routes...
Collapse
|
19
|
Song M, Hu Q, Li ZY, Sun X, Yang K. NFSI-catalyzed S‒S bond exchange reaction for the synthesis of unsymmetrical disulfides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Wu Z, Pratt DA. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. Angew Chem Int Ed Engl 2021; 60:15598-15605. [PMID: 33929774 DOI: 10.1002/anie.202104595] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of carboxylic acids into disulfides is described. The approach employs oxidative photocatalysis for base-promoted decarboxylation of the substrate, which yields an alkyl radical that reacts with a trisulfide dioxide through homolytic substitution. The trisulfide dioxides are easily prepared by a newly described approach. 1°, 2°, and 3° carboxylic acids with varied substitution are good substrates, including amino acids and substrates with highly activated C-H bonds. Trisulfide dioxides are also used to achieve the γ-C(sp3 )-H disulfuration of amides through a radical relay sequence. In both reactions, the sulfonyl radical that results from substitution propagates the reaction. Factors governing the selectivity of substitution at S2 versus S3 of the trisulfide dioxides have been explored.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
21
|
Wu Z, Pratt DA. A Divergent Strategy for Site‐Selective Radical Disulfuration of Carboxylic Acids with Trisulfide‐1,1‐Dioxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
22
|
Guo J, Zha J, Zhang T, Ding CH, Tan Q, Xu B. PdCl 2/DMSO-Catalyzed Thiol-Disulfide Exchange: Synthesis of Unsymmetrical Disulfide. Org Lett 2021; 23:3167-3172. [PMID: 33797269 DOI: 10.1021/acs.orglett.1c00858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unsymmetrical disulfides have been effectively prepared through thiol exchange with symmetrical disulfides employing a simple PdCl2/DMSO catalytic system. The given method features excellent functional group tolerance, a broad substrate scope, and operational simplicity. This reaction is especially useful for late-stage functionalization of bioactive scaffolds such as peptides and pharmaceuticals. Disulfide-containing organic dyes have also been prepared. This transformation could be extended to thiol-diselenide or thiol-ditelluride exchange affording RS-SeR' or RS-TeR'.
Collapse
Affiliation(s)
- Jimin Guo
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Tao Zhang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Hunter R, Ali D, Amer Y, Petersen WF, Kaschula CH. A Review of Heterolytic Synthesis Methodologies for Organotri- and Organotetrasulfane Synthesis. SYNOPEN 2021. [DOI: 10.1055/s-0040-1706018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractIt has been ten years since the last comprehensive review on polysulfanes, and during the intervening period, organodi-, organotri- and organotetrasulfanes have featured prominently in both the chemistry and biology literature. This timely update presents both a mechanistic and historical account of synthesis methodology available for organotri- and organotetrasulfanes involving heterolytic S–S bond formation.
Collapse
Affiliation(s)
- Roger Hunter
- Department of Chemistry, University of Cape Town
| | - Doaa Ali
- Department of Chemistry, University of Cape Town
- Department of Chemistry and Polymer Science, Stellenbosch University
| | - Yasien Amer
- Department of Chemistry, University of Cape Town
| | | | | |
Collapse
|
24
|
Gao WC, Liu J, Jiang X. Phthalimide-based-SSCF3 reagent for enantioselective dithiotrifluoromethylation. Org Chem Front 2021. [DOI: 10.1039/d1qo00001b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel dithiotrifluoromethylation reagent phthN-SSCF3 was designed and prepared for the incorporation of a SSCF3 unit into complex molecules and the stereoselective construction of a SSCF3-tethered quaternary carbon center.
Collapse
Affiliation(s)
- Wen-Chao Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Jianrong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|