1
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
2
|
Shao N, Liu X, Monnier V, Charles L, Rodriguez J, Bressy C, Quintard A. Enantioselective Synthesis of Acyclic Stereotriads Featuring Fluorinated Tetrasubstituted Stereocenters. Chemistry 2021; 28:e202103874. [PMID: 34821417 DOI: 10.1002/chem.202103874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Elaboration of enantioenriched complex acyclic stereotriads represents a challenge for modern synthesis even more when fluorinated tetrasubstituted stereocenters are targeted. We have been able to develop a simple strategy in a sequence of two unprecedented steps combining a diastereoselective aldol-Tishchenko reaction and an enantioselective organocatalyzed kinetic resolution. The aldol-Tishchenko reaction directly generates a large panel of acyclic 1,3-diols possessing a fluorinated tetrasubstituted stereocenter by condensation of fluorinated ketones with aldehydes under very mild basic conditions. The anti 1,3-diols featuring three contiguous stereogenic centers are generated with excellent diastereocontrol (typically >99 : 1 dr). Depending upon the precursors both diastereomers of stereotriads are accessible through this flexible reaction. Furthermore, from the obtained racemic scaffolds, development of an organocatalyzed kinetic resolution enabled to generate the desired enantioenriched stereotriads with excellent selectivity (typically er >95 : 5).
Collapse
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Xueyang Liu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | | | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Cyril Bressy
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
3
|
Sai M. Potassium Base-Promoted Diastereoselective Synthesis of 1,3-Diols from Allylic Alcohols and Aldehydes through a Tandem Allylic-Isomerization/Aldol-Tishchenko Reaction. Chem Asian J 2021; 16:4053-4056. [PMID: 34651444 DOI: 10.1002/asia.202101093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/14/2021] [Indexed: 01/07/2023]
Abstract
This study reports the first base-promoted aldol-Tishchenko reactions of allylic alcohols with aldehydes initiated by allylic isomerization. The reaction enables the diastereoselective synthesis of a variety of 1,3-diols with three contiguous stereogenic centers. Unlike commonly reported systems, our method allows the use of readily available allylic alcohols as nucleophiles instead of enolizable aldehydes and ketones.
Collapse
Affiliation(s)
- Masahiro Sai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R & D Building, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| |
Collapse
|
4
|
Hernández‐Ruiz R, Rubio‐Presa R, Suárez‐Pantiga S, Pedrosa MR, Fernández‐Rodríguez MA, Tapia MJ, Sanz R. Mo-Catalyzed One-Pot Synthesis of N-Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. Substituent-Tuned Photophysical Properties. Chemistry 2021; 27:13613-13623. [PMID: 34288167 PMCID: PMC8518888 DOI: 10.1002/chem.202102000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/26/2022]
Abstract
A catalytic domino reduction-imine formation-intramolecular cyclization-oxidation for the general synthesis of a wide variety of biologically relevant N-polyheterocycles, such as quinoxaline- and quinoline-fused derivatives, and phenanthridines, is reported. A simple, easily available, and environmentally friendly dioxomolybdenum(VI) complex has proven to be a highly efficient and versatile catalyst for transforming a broad range of starting nitroarenes involving several redox processes. Not only is this a sustainable, step-economical as well as air- and moisture-tolerant method, but also it is worth highlighting that the waste byproduct generated in the first step of the sequence is recycled and incorporated in the final target molecule, improving the overall synthetic efficiency. Moreover, selected indoloquinoxalines have been photophysically characterized in cyclohexane and toluene with exceptional fluorescence quantum yields above 0.7 for the alkyl derivatives.
Collapse
Affiliation(s)
- Raquel Hernández‐Ruiz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Rubén Rubio‐Presa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Samuel Suárez‐Pantiga
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - María R. Pedrosa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Manuel A. Fernández‐Rodríguez
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
- Current address: Departamento de Química Orgánica y Química InorgánicaCampus Científico-TecnológicoFacultad de FarmaciaUniversidad de AlcaláAutovía A-II, Km 33.128805-Alcalá de HenaresMadridSpain
| | - M. José Tapia
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Roberto Sanz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| |
Collapse
|
5
|
Revathi S, Raja P, Saha S, Eisen MS, Ghatak T. Recent developments in highly basic N-heterocyclic iminato ligands in actinide chemistry. Chem Commun (Camb) 2021; 57:5483-5502. [PMID: 34008633 DOI: 10.1039/d1cc00933h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last decade, major conceptual advances in the chemistry of actinide molecules and materials have been made to demonstrate their distinct reactivity profiles as compared to lanthanide and transition metal compounds, but some difficult questions remain concerning the intriguing stability of low-valent actinide complexes, and the importance of the 5f-orbitals in reactivity and bonding. The imidazolin-2-iminato moiety has been extensively used in ligands for the advancement of actinide chemistry owing to its unique capability of stabilizing the reactive and highly electrophilic metal ions by virtue of its strong electron donation and steric tunability. The current review article describes recent developments in the chemistry of light actinide metal ions (thorium and uranium) bearing these N-heterocyclic iminato moieties as supporting ligands. In addition, the effect of ring expansion of the N-heterocycle on the catalytic aptitude of the organoactinides is also described herein. The synthesis and reactivity of actinide complexes bearing N-heterocyclic iminato ligands are presented, and promising apposite applications are also presented. The current review focuses on addressing the catalytic behavior of actinide complexes with oxygen-containing substrates such as in the Tishchenko reaction, hydroelementation processes, and polymerization reactions. Actinide complexes have also found new catalytic applications, as demonstrated by the potent chemoselective carbonyl hydroboration and tandem proton-transfer esterification (TPTE) reaction, featuring coupling between an aldehyde and alcohol.
Collapse
Affiliation(s)
- Shanmugam Revathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
6
|
Sanz R, Sedano C, Virumbrales C, Suárez-Pantiga S. Aldol–Tishchenko Reaction of α-Oxy Ketones: Diastereoselective Synthesis of 1,2,3-Triol Derivatives. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstractα-Oxy ketones, easily accessible by conventional routes, can be selectively deprotonated generating an enolate intermediate, which upon treatment with paraformaldehyde undergoes an aldol–Tishchenko reaction, leading to relevant 1,2,3-triol fragments in a totally diastereoselective manner. The excellent stereocontrol in the generation of a quaternary stereocenter is attributed to stereoelectronic effects in the Evans intermediate. This methodology allows overcoming some limitations of our previously reported strategy, based on the reaction of α-lithiobenzyl ethers with esters and paraformaldehyde, broadening the scope of the obtained polyols. Synthetic applications of this process include the preparation of a new dilignol model and some functionalized oxetanes.
Collapse
|