1
|
Li C, Yu S. Photoredox-Mediated Radical Addition/Cyclization To Construct Benzannulated 6,5-Spiroketal Glycosides. Org Lett 2025; 27:1281-1286. [PMID: 39881611 DOI: 10.1021/acs.orglett.5c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
We herein present a green and mild photoredox strategy for constructing a framework of benzannulated 6,5-spiroketal glycosides. This method employs various O-arylacetylene glycosides and aryl ketone acids as the starting materials, facilitating the rapid and straightforward synthesis of 6,5-spiroketal glycosides with up to 92% yields under photoredox catalytic conditions. This efficient approach has the potential to significantly enhance the molecular library of carbohydrate-based pharmaceuticals.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Shibuya M, Yuruka S, Yamamoto Y. Generation of Bis(pentafluorophenyl)boron Enolates from Alkynes and Their Catalyst-Free Alkyne Coupling. Angew Chem Int Ed Engl 2025; 64:e202417910. [PMID: 39487096 DOI: 10.1002/anie.202417910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
Carbon-carbon bond forming reactions are powerful synthetic tools for constructing organic molecular frameworks. In this study, strongly Lewis acidic bis(pentafluorophenyl)boron enolates were generated from alkynes through oxygen transfer from 2,6-dibromopyridine N-oxide using tris(pentafluorophenyl)borane [B(C6F5)3]. Boron enolates were highly reactive owing to the strong Lewis acidity of the boron centers, and thus immediately coupled with alkynes. N-Ethynylphthalimide reacted as an alkyne with 2,6-dibromopyridine N-oxide and B(C6F5)3 to form a semi-stable bis(pentafluorophenyl)boron enolate through the coordination of the carbonyl group to the boron center. This enolate underwent coupling with another alkyne.
Collapse
Affiliation(s)
- Masatoshi Shibuya
- Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Souta Yuruka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Liu G, Ma D, Zhang J, Yang F, Gao Y, Su W. CO 2-promoted photocatalytic aryl migration from nitrogen to carbon for switchable transformation of N-arylpropiolamides. Nat Commun 2024; 15:10153. [PMID: 39578418 PMCID: PMC11584665 DOI: 10.1038/s41467-024-54239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Photocatalytic N-to-C aryl migration allows for quick construction of highly useful amide derivatives from readily available compounds. By developing the reactions of sodium sulfinates with the N-aryl-propiolamides, we herein demonstrate that the CO2-promoted visible-light-induced method enables a large variety of aryl groups on nitrogen atoms of the N-arylamides to undergo efficient aryl migration from N atom to C atom to synthesize tetra- and tri-substituted alkenyl amides selectively. 1,4-N-to-C aryl migration is a key step in this transformation which is achieved through photocatalytic radical-polar crossover pathway. The protocol exhibits the remarkably tolerant of the electronic properties of the migrating aryl substituent, as both electron-rich and -poor arenes are compatible with the migration process. As a result, this protocol features with a broad substrate scope, as demonstrated by more than 90 examples including complex bioactive compounds. Notably, abundant, nontoxic and low-cost CO2 acted as an essential and irreplaceable additive to enable the tetra- and tri-substituted alkenyl amides to be synthesized with excellent selectivity.
Collapse
Affiliation(s)
- Ge Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, PR China
| | - Jianchen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanyuanhang Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
4
|
Bhargava Reddy M, Becker VE, McGarrigle EM. Carbosulfonylation of Alkynes: A Direct Conversion of sp-C to sp 3-C through Visible Light-Mediated 3-Component Reaction. Org Lett 2024; 26:7858-7863. [PMID: 39259966 PMCID: PMC11421081 DOI: 10.1021/acs.orglett.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A 3-component metal-free carbosulfonylation of alkynes is reported using readily available alkyl carboxylic acids and arylsulfinates under visible light irradiation. This photochemical approach gives direct conversion of sp-C to sp3-C yielding highly functionalized alkyl sulfones. It employs feedstock chemicals as starting materials and shows a broad substrate scope and moderate diastereoselectivity. The method's utility is highlighted in the synthesis of sedum alkaloids. A single photocatalyst is proposed to be active in two distinct photocatalytic cycles operating in tandem.
Collapse
Affiliation(s)
- Mandapati Bhargava Reddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, Belfield, Dublin 4, Ireland
- A2P CDT in Sustainable Chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vanessa E Becker
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, Belfield, Dublin 4, Ireland
- A2P CDT in Sustainable Chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
6
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
7
|
Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023. [DOI: 10.3390/catal13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This review describes the recent advances in photocatalyzed reactions to form new carbon–sulfur and carbon–selenium bonds. With a total of 136 references, of which 81 articles are presented, the authors introduce in five sections an updated picture of the state of the art in the light-promoted synthesis of organochalcogen compounds (from 2019 to present). The light-promoted synthesis of sulfides by direct sulfenylation of C–C π-bonds; synthesis of sulfones; the activation of Csp2–N bond in the formation of Csp2–S bonds; synthesis of thiol ester, thioether and thioacetal; and the synthesis of organoselenium compounds are discussed, with detailed reaction conditions and selected examples for each protocol.
Collapse
|
8
|
Ghosh S, Pyne P, Ghosh A, Choudhury S, Hajra A. Visible-light-induced cascade reaction: a sustainable approach towards molecular complexity. Org Biomol Chem 2023; 21:1591-1628. [PMID: 36723242 DOI: 10.1039/d2ob02062a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential. The development of photocascade catalysis for a target molecule with a particular molecular skeleton and stereochemical framework presents certain challenges but provides a robust and environmentally benign synthetic alternative. This comprehensive review assembles all the accomplishments and highlights of visible-light-induced cascade reactions with literature coverage up to October 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Swagata Choudhury
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| |
Collapse
|
9
|
Röhrig UF, Majjigapu SR, Vogel P, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascenção K, Irving M, Coukos G, Michielin O, Zoete V. Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Enzyme Inhib Med Chem 2022; 37:1773-1811. [PMID: 35758198 PMCID: PMC9246256 DOI: 10.1080/14756366.2022.2089665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.
Collapse
Affiliation(s)
- Ute F Röhrig
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nahzli Dilek
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Kelly Ascenção
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Olivier Michielin
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research-Lausanne Branch, Lausanne, CH-1011, Switzerland
| | - Vincent Zoete
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
10
|
Xu P, Daniliuc CG, Bergander K, Stein C, Studer A. Synthesis of Five-Membered Ring Systems Bearing gem-Difluoroalkenyl and Monofluoroalkenyl Substituents via Radical β-Bromo Fragmentation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Xu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| |
Collapse
|
11
|
Liang YQ, Xu YX, Cai ZJ, Ji SJ. Visible-light photocatalytic radical addition-translocation-cyclization to construct sulfonyl-containing azacycles. Chem Commun (Camb) 2022; 58:10206-10209. [PMID: 36000456 DOI: 10.1039/d2cc03799h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel visible-light photocatalytic radical addition-translocation-cyclization (RATC) approach for the efficient synthesis of sulfonyl-containing azacycles is described. The reaction delivers a wide range of monocyclic, bicyclic and polycyclic azacycles by using easily prepared sodium sulfinates and N-homopropargylic amines as starting materials. Instead of the traditionally used toxic tin reagents and thermally hazardous azos in the RATC process, clean, renewable and sustainable visible light combined with a catalytic amount of photosensitizer is used in this process. Moreover, the successful transformation of some drug derivatives further highlights the potential application of this procedure.
Collapse
Affiliation(s)
- Yu-Qing Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Yi-Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China. .,Suzhou Baolidi Functional Materials Research Institute, Suzhou Xiangcheng, 215144, China
| |
Collapse
|
12
|
Li L, Li JZ, Sun YB, Luo CM, Qiu H, Tang K, Liu H, Wei WT. Visible-Light-Catalyzed Tandem Radical Addition/1,5-Hydrogen Atom Transfer/Cyclization of 2-Alkynylarylethers with Sulfonyl Chlorides. Org Lett 2022; 24:4704-4709. [PMID: 35724683 DOI: 10.1021/acs.orglett.2c01977] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel visible-light-catalyzed tandem radical addition/1,5-hydrogen atom transfer/cyclization cascade of 2-alkynylarylethers with sulfonyl chlorides in 2-methyltetrahydrofuran was developed under photocatalyst- and additive-free conditions. This reaction relies on unique energy transfer and solvent-radical relay strategies to generate sulfonyl radicals for the preparation of a series of sulfonyl-functionalized dihydrobenzofurans in moderate to high yields catalyzed by visible light or solar radiation.
Collapse
Affiliation(s)
- Long Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hui Qiu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
13
|
Yan Y, Li M, Liu M, Huang M, Cao L, Li W, Zhang X. Sc(OTf)
3
‐Catalyzed Dearomative [3+2] Annulation of 5‐Aminoisoxazoles with Quinone Imine Ketals or Quinone Monoacetals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
14
|
Feng J, Zhang F, Shu C, Zhu G. Copper‐Catalyzed
1,2,
5‐Trifunctionalization
of Terminal Alkynes Using
SR
as a Transient Directing Group for Radical Translocation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Chenyun Shu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
15
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
Shen Q, Zheng X, Li L, Zhong T, Yin C, Yu C. Photoinduced Three-Component Difluoroamidosulfonylation/Bicyclization: A Route to Dihydrobenzofuran Derivatives. Org Lett 2022; 24:2556-2561. [PMID: 35348346 DOI: 10.1021/acs.orglett.2c00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A visible-light-induced photocatalyst-free three-component radical cascade bicyclization has been achieved to obtain diverse difluoroamidosulfonylated dihydrobenzofurans in moderate to good yields. This protocol avoids potential toxicity and the tedious removal procedure for photocatalysts and also features mild reaction conditions and a good functional group tolerance. Moreover, mechanistic investigations reveal the formation of a charge-transfer complex and the involvement of an intramolecular 1,5-hydrogen atom transfer process in this transformation.
Collapse
Affiliation(s)
- Qitao Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
17
|
Sahoo AK, Rakshit A, Dahiya A, Pan A, Patel BK. Visible-Light-Mediated Synthesis of Thio-Functionalized Pyrroles. Org Lett 2022; 24:1918-1923. [DOI: 10.1021/acs.orglett.2c00283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
18
|
Zhou Y, Qin Y, Wang Q, Zhang Z, Zhu G. Photocatalytic Sulfonylcarbocyclization of Alkynes Using SEt as a Traceless Directing Group: Access to Cyclopentenes and Indenes. Angew Chem Int Ed Engl 2022; 61:e202110864. [PMID: 34747130 DOI: 10.1002/anie.202110864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Indexed: 11/09/2022]
Abstract
Cyclopentenes and indenes are important structural scaffolds in synthetic, medical, and material chemistry. Cyclization of alkynes via remote C-H functionalization is an appealing approach to construct these motifs due to its high efficiency and step-economy. Herein, a traceless directing group strategy was designed to reverse the regioselectivity of radical addition which enabled an unprecedented photocatalytic sulfonylcarbocyclization of terminal alkynes by forming C-C bond on inert C(sp3 )-H bond. It offers a facile access to decorated cyclopentenes and indenes under mild conditions. The resultant products could be converted into a set of valuable molecular scaffolds, including a key intermediate of AM-6226. Mechanistic experiments suggest a radical cascade pathway comprising a Markovnikov-type sulfonylation, 1,5-hydrogen atom transfer, 5-endo-trig cyclization, and β-elimination. This study lays further groundwork for the use of anti-Baldwin 5-endo-trig radical cyclization in rapidly assembling five-membered carbocycles.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Yizhou Qin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Qinggui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
19
|
Zhou Y, Qin Y, Wang Q, Zhang Z, Zhu G. Photocatalytic Sulfonylcarbocyclization of Alkynes Using SEt as a Traceless Directing Group: Access to Cyclopentenes and Indenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yizhou Qin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qinggui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
20
|
Shi W, Yang C, Guo L, Xia W. Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water. Org Chem Front 2022. [DOI: 10.1039/d2qo01424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A photo-induced radical addition–translocation–cyclization (RATC) reaction of terminal alkynes and α-oxocarboxylic acids using water as the reaction medium is reported herein.
Collapse
Affiliation(s)
- Wei Shi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Yue B, Wu X, Zhu C. Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Le S, Bai Y, Qiu J, Zhang Z, Zheng H, Zhu G. Access to cyclopentenones via copper-catalyzed 5- endo trifluoromethylcarbocyclization of ynones. Org Chem Front 2022. [DOI: 10.1039/d2qo00843b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed 5-endo-selective trifluoromethylcarbocyclization of ynones is realized for the direct construction of trifluoromethylated cyclopentenones.
Collapse
Affiliation(s)
- Siya Le
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
23
|
Song X, Wang K, Xue L, Yu H, Zhang X, Lee R, Fan X. Coupling partner-dependent unsymmetrical C–H functionalization of N-phenoxyacetamides leading to sophisticated spirocyclic scaffolds. Org Chem Front 2022. [DOI: 10.1039/d2qo00851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a coupling partner-dependent unsymmetrical C–H functionalization of N-phenoxyacetamides leading to the formation of sophisticated spirocyclic scaffolds is presented.
Collapse
Affiliation(s)
- Xia Song
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kelin Wang
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lian Xue
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Xinying Zhang
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Xuesen Fan
- Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Li JZ, Zhang WK, Ge GP, Zheng H, Wei WT. Recent progress in the radical α-C(sp 3)-H functionalization of ketones. Org Biomol Chem 2021; 19:7333-7347. [PMID: 34612358 DOI: 10.1039/d1ob01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct use structurally simple ketones as α-ketone radical sources for α-C(sp3)-H functionalization is a sustainable and powerful approach for constructing complex and multifunctional chemical scaffolds with diverse applications. The reactions of α-ketone radicals with alkenes, alkynes, enynes, imides, and imidazo[1,2-a]pyridines have broadened the structural diversity and complexity of ketones. Through chosen illustrative examples, we outline the recent progress in the development of methods that enable the radical α-C(sp3)-H functionalization of ketones, with an emphasis on radical initiation systems and possible mechanisms of the transformations. The application of these strategies is illustrated by the synthesis of several biologically active molecules and drug molecules. Further subdivision is based on substrate type and reaction type.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | |
Collapse
|
25
|
Ye X, Wu X, Guo SR, Huang D, Sun X. Recent advances of sodium sulfinates in radical reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Dong W, Fang ZY, Cao TY, Cao JH, Zhao ZQ, Zhang L, Li W, Qi L, Wang LJ. Copper-Catalyzed Aminosulfonylation of O-Homoallyl Benzimidates with Sodium Sulfinates to Access Sulfonylated 1,3-Oxazines. Org Lett 2021; 23:5809-5814. [PMID: 34279975 DOI: 10.1021/acs.orglett.1c01962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile copper-catalyzed aminosulfonylation of O-homoallyl benzimidates with sodium sulfinates in the presence of tert-butyl peroxybenzoate (TBPB) and XPhos ligand has been developed. By using this protocol, a variety of potentially bioactive 1,3-oxazines were directly synthesized. This method has the merits of a cheap catalyst, easily available and stable sulfone reagents, and simple operation.
Collapse
Affiliation(s)
- Wei Dong
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zhuo-Yue Fang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Tong-Yang Cao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Jie-Hui Cao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zi-Qiang Zhao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Linlin Zhang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
27
|
Organocatalyst‐promoted Diastereoselective and Enantioselective Michael Addition/Hemiketalization Reaction between Hydroxymaleimide and Quinone. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Lu Z, Zhang Q, Ke M, Hu S, Xiao X, Chen F. TfOH-Catalyzed [4 + 1] Annulation of p-Quinone Methides with α-Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. J Org Chem 2021; 86:7625-7635. [PMID: 33993694 DOI: 10.1021/acs.joc.1c00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a methodology for the greatly efficient construction of significant 2,3-dihydrobenzofuran scaffolds bearing a quaternary carbon center at the C2 position by means of [4 + 1] annulation reactions between p-quinone methides and α-aryl diazoacetates as C1 synthons through organocatalysis by readily accessible TfOH catalyst under mild and transition metal-free conditions. This metal-free protocol furnishes an operationally simple and swift process for the free assembly of diverse highly functionalized 2,3-dihydrobenzofurans and also features broad substrate scope, excellent functional group compatibility, and environmental friendliness. Mechanistic investigation suggested that the reaction undergoes a rapid cascade protonation/intermolecular Michael addition/intramolecular substitution process.
Collapse
Affiliation(s)
- Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qingchun Zhang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
29
|
Guo W, Wang Q, Zhu J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem Soc Rev 2021; 50:7359-7377. [DOI: 10.1039/d0cs00774a] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of heteroatom-centred radicals followed by intramolecular 1,5-HAT and functionalisation of the translocated carbon-centred radical is an efficient way to functionalize chemo- and regio-selectively the remote unactivated C(sp3)–H bond.
Collapse
Affiliation(s)
- Weisi Guo
- College of Chemistry & Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao
- P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| |
Collapse
|