1
|
Chang H, Wang R, Wang YM. Asymmetric Synthesis of Propargylic and Allenic Silanes, Germanes, and Stannanes. Chem Asian J 2025:e00105. [PMID: 40392020 DOI: 10.1002/asia.202500105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025]
Abstract
Enantioenriched propargylic and allenic derivatives of silicon, germanium, and tin are versatile building blocks for stereoselective synthesis. Consequently, considerable efforts toward their efficient and selective synthesis have been made, both through classical approaches for chirality transfer and catalytic enantioselective strategies that employ the latest developments in transition metal catalysis, organocatalysis, and photoredox catalysis. In this review, we survey broadly applicable synthetic strategies and discuss the scope and mechanistic details for specific protocols that afford these compounds in a regio- and stereoselective manner.
Collapse
Affiliation(s)
- Hai Chang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
2
|
Cai ZX, Zhang Q, Wei TY, Tian H, Jiang JW, Wei ZY, Yin L. Design, Synthesis, and Application of a Family of Chiral Non-C 2-Symmetric NHCs with a Fused Sidechain. Angew Chem Int Ed Engl 2025:e202508572. [PMID: 40265960 DOI: 10.1002/anie.202508572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 04/24/2025]
Abstract
Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non-C2-Symmetric NHCs with a fused sidechain, whose precursors are synthesized by a simple five-step route. The synthesis includes Pd-catalyzed cross-coupling or nucleophilic addition/oxidation, chiral phosphoric acid-catalyzed asymmetric reduction of 2-aryl-quinolines, bromination at C8, Buchwald-Hartwig amination, and cyclization with methyl orthoformate. Among nine prepared NHCs, YC-NHC8 is the optimal ligand for Cu(I)-catalyzed asymmetric SN2' silylation, YC-NHC3 works as the best ligand for Cu(I)-catalyzed enantioselective conjugate silylation of simple α,β-unsaturated amides, and YC-NHC9 serves as the most suitable ligand for copper(I)-catalyzed asymmetric silylation of azadienes. Remarkably, these three reactions are successfully run under a catalyst loading of 0.1 mol%, indicating that YC-NHCs may have the potential to be broadly used in efficient asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Zhen-Xi Cai
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qi Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Tian-Yu Wei
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Hu Tian
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Jia-Wei Jiang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Zhang-Yi Wei
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Liang Yin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
3
|
Wang ZL, Wang Y, Sun YC, Zhao JB, Xu YH. Regiodivergent Hydrosilylation of Polar Enynes to Synthesize Site-Specific Silyl-Substituted Dienes. Angew Chem Int Ed Engl 2024; 63:e202405791. [PMID: 38593214 DOI: 10.1002/anie.202405791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Herein, we present catalyst-regulated switchable site-selective hydrosilylation of enynes, which are suitable for a wide range of alkyl and aryl substituted polar enynes and exhibit excellent functional group compatibility. Under the optimized conditions, silyl groups can be precisely installed at various positions of 1,3-dienes. While α- and γ-silylation products were obtained under platinum-catalytic systems, β-silylation products were delivered with [Cp*RuCl]4 as catalyst. This process lead to the formation of 1,3-dienoates with diverse substitutions, which would pose challenges with other methodologies.
Collapse
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ying Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu-Chen Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P.R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Zhu J, Xiang H, Chang H, Corcoran JC, Ding R, Xia Y, Liu P, Wang YM. Enantioselective and Regiodivergent Synthesis of Propargyl- and Allenylsilanes through Catalytic Propargylic C-H Deprotonation. Angew Chem Int Ed Engl 2024; 63:e202318040. [PMID: 38349957 PMCID: PMC11003844 DOI: 10.1002/anie.202318040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
We report a highly enantioselective intermolecular C-H bond silylation catalyzed by a phosphoramidite-ligated iridium catalyst. Under reagent-controlled protocols, propargylsilanes resulting from C(sp3)-H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less-hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situ-generated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3-enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3-propargyl/allenyl Ir intermediate is generated upon π-complexation-assisted deprotonation and undergoes outer-sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hengye Xiang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hai Chang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James C Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yue Xia
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Kong Z, Hu W, Morken JP. 1,2-Diborylsilanes: Catalytic Enantioselective Synthesis and Site-Selective Cross-Coupling. ACS Catal 2023; 13:11522-11527. [PMID: 38469392 PMCID: PMC10927258 DOI: 10.1021/acscatal.3c01789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A Pt-catalyzed enantioselective hydrosilylation of (Z)-1,2-diborylethylene provides a 1,2-diboryl-1-silylalkane that can be used in catalytic cross-coupling reactions. Depending on the catalyst employed and the cross-coupling reaction conditions, the coupling can occur at either α or β relative to the silane center.
Collapse
Affiliation(s)
- Ziyin Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Weipeng Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
6
|
Wang ZL, Li Q, Yang MW, Song ZX, Xiao ZY, Ma WW, Zhao JB, Xu YH. Regio- and enantioselective CuH-catalyzed 1,2- and 1,4-hydrosilylation of 1,3-enynes. Nat Commun 2023; 14:5048. [PMID: 37598226 PMCID: PMC10439940 DOI: 10.1038/s41467-023-40703-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
We report a copper-catalyzed ligand-controlled selective 1,2- and 1,4-hydrosilylation of 1,3-enynes, which furnishes enantiomerically enriched propargyl- and 1,2-allenylsilane products in high yields with excellent enantioselectivities (up to 99% ee). This reaction proceeds under mild conditions, shows broad substrate scope for both 1,3-enynes and trihydrosilanes, and displays excellent regioselectivities. Mechanistic studies based on deuterium-labeling reactions and density functional theory (DFT) calculations suggest that allenylcopper is the dominant reactive intermediate under both 1,2- and 1,4-hydrosilylation conditions, and it undergoes metathesis with silanes via selective four-membered or six-membered transition state, depending on the nature of the ligand. The weak interactions between the ligands and the reacting partners are found to be the key controlling factor for the observed regioselectivity switch. The origin of high enantiocontrol in the 1,4-hydrosilylation is also revealed by high level DLPNO-CCSD(T) calculations.
Collapse
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Qi Li
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zhao-Xin Song
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zhen-Yu Xiao
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, 130012, Changchun, P.R. China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China.
| |
Collapse
|
7
|
Yan H, Zhang C, Han JJ, Du SS, Hua YZ, Wang MC, Mei GJ, Jia SK. Zinc-Catalyzed Asymmetric Cascade Michael/Acyl Transfer Reaction between α-Hydroxy Aryl Ketones and Enynones. Org Lett 2023; 25:1918-1923. [PMID: 36926928 DOI: 10.1021/acs.orglett.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We described herein a neoteric enantioselective cascade Michael/acyl transfer reaction of enynones and α-hydroxy aryl ketones catalyzed by dinuclear zinc cooperative catalysis. A series of structurally diverse chiral 1,5-dicarbonyl compounds were synthesized in good yields with excellent stereoselectivities. This strategy features broad substrate scope, high atom economy, as well as enynones as efficient electrophilic acyl transfer reagents in asymmetric cascade reactions for the first time.
Collapse
Affiliation(s)
- Hang Yan
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Cui Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Jiao-Jiao Han
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Si-Si Du
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Guang-Jian Mei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
8
|
Han B, Li W, Chen S, Zhang Z, Zhao X, Zhang Y, Zhu L. Recent Advances in Copper-Catalyzed Silyl Addition of Unsaturated Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Li Q, Wang ZL, Lu HX, Xu YH. Copper-Catalyzed Enantioselective 1,4-Protosilylation of Alkynyl-substituted Enones to Synthesize the Highly Diastereomeric Chiral Homoallenylsilanes. Org Lett 2022; 24:2832-2836. [PMID: 35394282 DOI: 10.1021/acs.orglett.2c00739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed 1,4-protosilylation of α-alkynyl-enones to form the functionalized chiral homoallenylsilanes was developed. In the presence of a chiral monopyridine oxazoline ligand, a variety of trisubstituted allene derivatives bearing a contiguous stereogenic center and axis were prepared in good yields with excellent enantioselectivities and diastereoselectivities.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Huan-Xuan Lu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Guo R, Sang J, Xiao H, Li J, Zhang G. Development of Novel
Phosphino‐Oxazoline
Ligands and Their Application in Asymmetric Alkynlylation of Benzylic Halides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, , Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 P. R. China
| | - Jiale Sang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, , Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU‐uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, , Central China Normal University (CCNU), 152 Luoyu Road, Wuhan Hubei 430079 P. R. China
| | - Junxia Li
- CCNU‐uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, , Central China Normal University (CCNU), 152 Luoyu Road, Wuhan Hubei 430079 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, , Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 P. R. China
- CCNU‐uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, , Central China Normal University (CCNU), 152 Luoyu Road, Wuhan Hubei 430079 P. R. China
| |
Collapse
|
11
|
Kobayashi T, Nishino S, Miura M, Hirano K. Synthesis of β-Silyl-α-amino Acid Derivatives by Cu-Catalyzed Regio- and Enantioselective Silylamination of α,β-Unsaturated Esters. Org Lett 2022; 24:1418-1422. [PMID: 35112875 DOI: 10.1021/acs.orglett.2c00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed silylamination of α,β-unsaturated esters with silylboranes and hydroxylamines has been developed to afford the corresponding β-silyl-α-amino acid derivatives, which are of great interest in medicinal and pharmaceutical chemistry. Additionally, by using a suitable chiral bisphosphine ligand, the asymmetric induction is possible, delivering the optically active β-silyl-α-amino acids with synthetically acceptable diastereomeric ratios (55:45-82:18 dr) and high enantiomeric ratios (81:19-99:1 er).
Collapse
Affiliation(s)
- Toshimichi Kobayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Zhang Y, Guo J, Han J, Zhou X, Cao W, Fu Z. Bifunctional squaramide catalyzed asymmetric synthesis of chiral α-mercaptosilanes. Org Biomol Chem 2021; 19:6412-6416. [PMID: 34235529 DOI: 10.1039/d1ob00981h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional squaramide-catalyzed nucleophilic addition of thiophenols to easily available β-silyl α,β-unsaturated carbonyl compounds has been successfully developed. A structurally diverse set of chiral α-mercaptosilanes was efficiently prepared in good to excellent yields with acceptable enantioselectivities. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
13
|
Li T, Wu Y, Duan W, Ma Y. Silylative aromatization of p-quinone methides under metal and solvent free conditions. RSC Adv 2021; 11:17860-17864. [PMID: 35480172 PMCID: PMC9033227 DOI: 10.1039/d1ra03193g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
A base-mediated silylation reaction leading to benzyl silanes has been developed. Under transition-metal and solvent free conditions, the silylation of a wide array of p-quinone methides is achieved using a Cs2CO3 catalyst in yields up to 96%. Carboxylation of the as-obtained organosilane with gaseous CO2 provides a new synthetic protocol for the preparation of carboxylic acid. A novel and efficient synthetic protocol is reported for the synthesis of benzyl silanes from readily available silylborane and p-quinone methides using 5% cesium carbonate under solvent-free conditions.![]()
Collapse
Affiliation(s)
- Tingting Li
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Yuzhu Wu
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Yudao Ma
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| |
Collapse
|
14
|
Yang LL, Ouyang J, Zou HN, Zhu SF, Zhou QL. Enantioselective Insertion of Alkynyl Carbenes into Si-H Bonds: An Efficient Access to Chiral Propargylsilanes and Allenylsilanes. J Am Chem Soc 2021; 143:6401-6406. [PMID: 33904721 DOI: 10.1021/jacs.1c03435] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral propargylsilanes and chiral allenylsilanes have emerged as versatile building blocks for organic synthesis. However, efficient methods for preparing these organosilicon compounds are lacking. We herein report a highly enantioselective method for synthesis of chiral propargylsilanes and chiral allenylsilanes from readily available alkynyl sulfonylhydrazones. Specifically, chiral spiro phosphate dirhodium complexes were used to catalyze asymmetric insertion of alkynyl carbenes into the Si-H bonds of silanes to afford a variety of chiral propargylsilanes with excellent enantioselectivity. Subsequently, a platinum catalyst was used for stereospecific isomerization of the chiral propargylsilanes to the corresponding chiral allenylsilanes.
Collapse
Affiliation(s)
- Liang-Liang Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Ouyang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hui-Na Zou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Zhang L, Oestreich M. Diastereotopic Group-Selective Intramolecular Aldol Reactions Initiated by Enantioselective Conjugate Silylation: Diastereodivergence Controlled by the Silicon Nucleophile. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Liangliang Zhang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
16
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
17
|
Zhang Y, Huang X, Guo J, Wei C, Gong M, Fu Z. Carbene-Catalyzed Enantioselective Synthesis of γ-Keto-β-silyl Esters and Amides. Org Lett 2020; 22:9545-9550. [PMID: 33300797 DOI: 10.1021/acs.orglett.0c03589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A variety of γ-keto-β-silyl esters and amides, most with extremely high enantioselectivities, were efficiently prepared via a carbene-catalyzed formal [4 + 2] annulation followed by ring opening with nucleophiles. The resulting compounds from this one-pot strategy can be easily converted into enantioenriched β,σ-dihydroxyl esters.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|