1
|
Tortora C, Fischer CA, Kohlbauer S, Zamfir A, Ballmann GM, Pahl J, Harder S, Tsogoeva SB. Development and mechanistic studies of calcium-BINOL phosphate-catalyzed hydrocyanation of hydrazones. Beilstein J Org Chem 2025; 21:755-765. [PMID: 40276279 PMCID: PMC12018919 DOI: 10.3762/bjoc.21.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Asymmetric hydrocyanation of hydrazones, catalyzed by a calcium-BINOL phosphate complex, has been studied for the first time both experimentally and computationally with DFT methods. A full catalytic cycle for the enantioselective synthesis of α-hydrazinonitriles is proposed based on insights gained from DFT calculations. Trimethylsilyl cyanide (TMSCN) has been used as a sacrificial cyanide source. We found that isocyanide (rather than cyanide) is a preferred coordination to calcium during the catalytic cycle, while the active catalyst prefers a side-on coordination of cyanide. The configuration-determining step is a hydrocyanation via a calcium isocyanide complex, whereas the rate-limiting step is that which recovers the calcium catalyst and replaces the TMS-bound product from the catalyst. While our experimental data demonstrate enantioselectivity values as high as 89% under certain conditions, the overall enantioselectivity achieved with the calcium catalyst remains modest, mainly due to competing pathways for the Z- and E-hydrazone isomers leading to opposite enantiomers. The experimental results confirm these computational proposals.
Collapse
Affiliation(s)
- Carola Tortora
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Strasse 10, 91058 Erlangen, Germany
| | - Christian Andreas Fischer
- Department of Chemistry and Pharmacy, Chair of Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Sascha Kohlbauer
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Strasse 10, 91058 Erlangen, Germany
| | - Alexandru Zamfir
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Strasse 10, 91058 Erlangen, Germany
| | - Gerd M Ballmann
- Department of Chemistry and Pharmacy, Chair of Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Jürgen Pahl
- Department of Chemistry and Pharmacy, Chair of Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Sjoerd Harder
- Department of Chemistry and Pharmacy, Chair of Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Strasse 10, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Mondal BD, Gorai S, Nath R, Paul A, Guin J. Enantioselective Amination of 3-Substituted-2-benzofuranones via Non-covalent N-Heterocyclic Carbene Catalysis. Chemistry 2024; 30:e202303115. [PMID: 37997460 DOI: 10.1002/chem.202303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Herein, an efficient method for asymmetric α-amination of 2-benzofuranones with N-heterocyclic carbene (NHC) catalysis is reported. The process is based on non-covalent interaction of NHC with substrate, facilitating the formation of a chiral ion-pair that encompasses enolate and azolium salt. The activated enolate adds to an electrophilic amine source with sufficient facial control to furnish an enantioenriched product having an amine substituted quaternary stereocenter. The process displays a broad substrate scope. A preparative scale synthesis has been achieved. Preliminary mechanistic investigations based on experimental and DFT studies suggest a reaction pathway that involves non-covalent substrate/NHC interactions and essentially implicate the role of π-π interaction in diastereomeric transition states for stereo-chemical discrimination.
Collapse
Affiliation(s)
- Bhaskar Deb Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sadhan Gorai
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rounak Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
3
|
Kshatriya R. Recent Advancement in H 8-BINOL Catalyzed Asymmetric Methodologies. ACS OMEGA 2023; 8:17381-17406. [PMID: 37251114 PMCID: PMC10210047 DOI: 10.1021/acsomega.2c05535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
H8-BINOL, a partially reduced form of BINOL, is widely employed in a broad array of organocatalyzed asymmetric methodologies. Over the last 25 years, asymmetric organocatalysis has witnessed an incredible improvement, and an advancement still continues to get a single enantio-enriched product. The broad-spectrum applications of H8-BINOL organocatalyst in C-C bond formation, C-heteroatom bond construction, name reactions, pericyclic reactions, and one pot and multicomponent reaction are attracting the attention of researchers. A diversified unique H8-BINOL-based catalyst has been synthesized and screened for catalytic activity. In this Review we frame out the H8-BINOL catalyzed novel discoveries from the last two decades.
Collapse
Affiliation(s)
- Rajpratap Kshatriya
- School
of Chemical Sciences, UM-DAE Centre for
Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai, Maharashtra 400098,India
| |
Collapse
|
4
|
Nishimura K, Ogura Y, Takeda K, Guo W, Ishihara K. Chiral π-Cu(II) Catalysts for the Enantioselective α-Amination of N-Acyl-3,5-dimethylpyrazoles. Org Lett 2022; 24:7685-7689. [PMID: 36215133 DOI: 10.1021/acs.orglett.2c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the highly enantioselective α-amination of N-acyl-3,5-dimethylpyrazoles with dialkyl azodicarboxylates, catalyzed by in situ generated π-Cu(II) complexes that consist of Cu(OTf)2 and N-(5H-dibenzo[a,d][7]annulen-5-yl)-l-alanine-derived amides, to give the corresponding products as d-α-amino acid derivatives (up to >99% yield and 99% ee). The site-selectivity and enantioselectivity can be satisfactorily explained by the coordination of dialkyl azodicarboxylate with π-Cu(II) complex. The synthetic potential of this one-pot transformation to the α-amino ester is also described.
Collapse
Affiliation(s)
- Kazuki Nishimura
- Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya464-8603, Japan
| | - Yoshihiro Ogura
- Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya464-8603, Japan
| | - Kazuki Takeda
- Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya464-8603, Japan
| | - Weiwei Guo
- Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya464-8603, Japan
| |
Collapse
|
5
|
Wu Z, Krishnamurthy S, Satyanarayana Tummalapalli KS, Xu J, Yue C, Antilla JC. Enantioselective Amination of
β
‐Keto Esters Catalyzed by Chiral Calcium Phosphates. Chemistry 2022; 28:e202200907. [DOI: 10.1002/chem.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenwei Wu
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Suvratha Krishnamurthy
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - K. S. Satyanarayana Tummalapalli
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Jun Xu
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Caizhen Yue
- School of Science Zhejiang Sci-Tech University Hangzhou City Zhejiang Province 310018 China
| | - Jon C. Antilla
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
- School of Science Zhejiang Sci-Tech University Hangzhou City Zhejiang Province 310018 China
| |
Collapse
|
6
|
Wu Z, Krishnamurthy S, Tummalapalli KSS, Antilla JC. Chiral Calcium Phosphate-Catalyzed Enantioselective Amination of 3-Aryl-2-oxindoles with Dibenzyl Azodicarboxylate. J Org Chem 2022; 87:8203-8212. [PMID: 35621216 DOI: 10.1021/acs.joc.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chiral calcium phosphate-catalyzed enantioselective amination of 2-oxindoles with dibenzyl azodicarboxylate has been developed, affording the products in consistently high yields and excellent enantioselectivity. This synthetic method features low catalyst loading and a high catalytic efficiency. Moreover, the practical value of this process is well demonstrated by a scale-up experiment and a trial of catalyst recovery and reuse.
Collapse
Affiliation(s)
- Zhenwei Wu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Suvratha Krishnamurthy
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - K S Satyanarayana Tummalapalli
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
7
|
Sun Z, Chen L, Qiu KX, Liu B, Li H, Yu F. Enantioselective Peroxidation of C-Alkynyl Imines Enabled by Chiral BINOL Calcium Phosphate. Chem Commun (Camb) 2022; 58:3035-3038. [DOI: 10.1039/d1cc07156d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a catalytic enantioselective addition of C-alkynyl imines with hydroperoxides catalyzd by chiral BINOL calcium phosphate, affording a broad range of enantioenriched α-peroxy propargylamines in good yields (80-99%)...
Collapse
|
8
|
Antenucci A, Messina M, Bertolone M, Bella M, Carlone A, Salvio R, Dughera S. Turning Renewable Feedstocks into a Valuable and Efficient Chiral Phosphate Salt Catalyst. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Achille Antenucci
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre Reference Centre for INSTM University of Turin Via Gioacchino Quarello 15/A 10135 Turin Italy
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Monica Messina
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | | | - Marco Bella
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences University of L'Aquila via Vetoio 67100 L'Aquila Italy
| | - Riccardo Salvio
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
- Department Chemical Sciences and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
- CNR Institute for Biological Systems Rome Headquarter- Reaction Mechanisms Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Dughera
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|
9
|
Takagi R, Yamasaki Y. Chiral Calcium Bis-sulfonimide Catalyzed Diels-Alder Reactions of 1-Acryloyl-pyrazole. CHEM LETT 2021. [DOI: 10.1246/cl.210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yuhei Yamasaki
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|