1
|
Sagar K, Srimannarayana M, Teegala R, Merja BC, Pradhan TR, Park JK. Difluoroenoxysilane: Expanding Allenamide Hydrodifluoroalkylation for Diverse Carbon Frameworks. Org Lett 2024; 26:5676-5681. [PMID: 38922286 DOI: 10.1021/acs.orglett.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study presents an effective route to access functionalizable fluorinated enamides characterized by their high regiospecificity around the allenamide. Synthetic applications of the resulting difluorocarbonyl-bearing enamide products were pursued through straightforward synthetic transformations to prepare unknown functionalized valuable halogenated O-heterocycles and C5 skeletons. Experimental mechanistic studies showed that hydrodifluoroalkylation occurs via a hidden Brønsted acid activation, thereby establishing a new electrophilic activation mode for allenamide through a conjugated iminium intermediate.
Collapse
Affiliation(s)
- Kadiyala Sagar
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Hyderabad 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Malempati Srimannarayana
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Hyderabad 502329, India
| | - Raju Teegala
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Hyderabad 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Bhailal C Merja
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Pei BB, Wang J, Ji J, Chen Q, Wang CQ, Feng C. Radical Decarboxylation-Initiated S H2' Reaction of β,β-Difluoroenol Sulfonates: Access to α,α-Difluoroketones. Org Lett 2024. [PMID: 38796776 DOI: 10.1021/acs.orglett.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Reported herein is a novel radical decarboxylation-initiated SH2' reaction of β,β-difluoroenol sulfonates. This transformation is characterized by mild reaction conditions, a broad substrate scope, and late-stage modification of drug molecules, providing general and mechanistically distinct access to bioactive and synthetically versatile α,α-difluoroketones. Preliminary mechanistic studies demonstrate that this reaction proceeds through a succession of silver-mediated decarboxylative radical generation and radical-addition-induced β-elimination of the sulfonyl radical.
Collapse
Affiliation(s)
- Bing-Bing Pei
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Jiali Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Jiuyang Ji
- Capital Construction Office, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Qing Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Cheng-Qiang Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| |
Collapse
|
3
|
Tan K, He J, Mu Z, Ammar IM, Che C, Geng J, Xing Q. Visible-Light-Promoted C(sp 3)-C(sp 3) Cross-Coupling of Amino Acids and Aryl Trifluoromethyl Ketones Through Simultaneous Decarboxylation and Defluorination. Org Lett 2023. [PMID: 37991739 DOI: 10.1021/acs.orglett.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A photoredox-catalyzed approach for the difluoroalkylation of amino acids was achieved through simultaneous decarboxylation and defluorination processes. This innovative protocol employs commonly available amino acids and trifluoroacetophenones as the primary starting materials, eliminating the necessity for preactivation. This strategy has enabled the synthesis of several difluoroketone functionalized amines in moderate to impressive yields. These synthesized compounds are presented as foundational molecules for subsequent modification. The underlying mechanism for the transformation is anchored in a single electron transfer (SET) radical pathway.
Collapse
Affiliation(s)
- Kui Tan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaan He
- PolyAdvant, Shenzhen, 518000, China
| | | | - Ibrahim M Ammar
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| |
Collapse
|
4
|
Wang XY, Yang M, Zhou Y, Zhou J, Hao YJ. A highly efficient metal-free selective 1,4-addition of difluoroenoxysilanes to chromones. Org Biomol Chem 2023; 21:1033-1037. [PMID: 36625240 DOI: 10.1039/d2ob02152h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient metal-free selective 1,4-addition reaction of difluoroenoxysilanes to chromones was developed using the low-cost and readily available HOTf as the catalyst, which is a facile and straightforward method to access valuable C2-difluoroalkylated chroman-4-one derivatives. Interestingly, the products could be readily converted to the difluorinated bioisostere of the natural product (S)-2,6-dimethylchroman-4-one and a difluorinated benzo-seven-membered heterocycle via the Schmidt rearrangement reaction. In addition, the in vitro anti-proliferative activities of these synthesized derivatives against human colon carcinoma cells (HCT116) revealed that compound 3g exhibited potent inhibitory effect on HCT116 cancer cells with an IC50 value of 6.37 μM, representing a novel lead compound for further structural optimization and biological evaluation.
Collapse
Affiliation(s)
- Xi-Yu Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Min Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Yong-Jia Hao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
5
|
Li X, Zhang X, Xiong B, Lian Z. Palladium-Catalyzed Carbonylative Hiyama-Denmark Reaction toward the Synthesis of Aryl Carbonyl-Containing Oxindoles. J Org Chem 2022; 88:5226-5230. [PMID: 36579970 DOI: 10.1021/acs.joc.2c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A palladium-catalyzed domino Heck cyclization/carbonylative Hiyama-Denmark cross-coupling reaction between alkene-tethered aryl iodides and silylcarboxylic acids is presented. This reaction proceeds well without toxic carbon monoxide (CO) gas and has good functional group tolerance, providing an alternative access to carbonyl-containing oxindoles. In this transformation, silylcarboxylic acids play a dual role as a CO source and a nucleophile.
Collapse
Affiliation(s)
- Xiong Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Yu ZL, Chen JW, Chen YL, Zheng RJ, Ma M, Chen JP, Shen ZL, Chu XQ. DMSO-Promoted Difluoroalkylation of Organophosphonium Salts with Difluoroenol Silyl Ethers. Org Lett 2022; 24:5557-5561. [PMID: 35867631 DOI: 10.1021/acs.orglett.2c02088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient method for the synthesis of β,β-di(hetero)aryl-α,α-difluorinated ketones using readily available organophosphonium salts and difluoroenol silyl ethers has been developed. This mild reaction features a good functional group tolerance, a scaled-up synthesis, and synthetic simplicity. By taking advantage of DMSO as a less-toxic promoter and solvent for the difluoroalkylation and C-P bond functionalization, the use of transition-metal catalysts and sensitive additives could be avoided.
Collapse
Affiliation(s)
- Zi-Lun Yu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jia-Wei Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yu-Lan Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ren-Jun Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian-Ping Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
7
|
Guo MM, Song XD, Liu X, Zheng YW, Chu XQ, Rao W, Shen ZL. Iron(III)‐catalyzed difluoroalkylation of aryl alkynes with difluoroenol silyl ether in the presence of trimethylsilyl chloride. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Patra K, Reddy MK, Mallik S, Baidya M. Divergent Reaction of Activated Pyridines with α,α-Difluorinated gem-Diols: Regioselective Synthesis of gem-Difluorinated Dihydropyridines and Dihydropyridones. Org Lett 2022; 24:4014-4018. [PMID: 35613433 DOI: 10.1021/acs.orglett.2c01445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleophilic reactivity of α,α-difluorinated gem-diols toward activated pyridinium salts has been capitalized in a highly regioselective fashion, offering biologically relevant 1,4-dihydropyridines and 3,4-dihydro-2-pyridones adorned with the valuable gem-difluoromethylene motif. The protocol is scalable as well as high yielding and accommodates a broad range of substrates and functional groups. Additionally, the synthesis of difluorinated oxa-azabicyclo[3.3.1]nonane frameworks has been showcased through product diversification.
Collapse
Affiliation(s)
- Koushik Patra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mallu Kesava Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
9
|
Gui J, Sun M, Wu H, Li J, Yang J, Wang Z. Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light promoted direct benzylic C–H difluoroalkylation with difluoroenoxysilanes catalyzed by Na2-eosin Y via a HAT-ORPC pathway has been developed, providing an efficient and atom-economic method for production of α-benzyl-α,α-difluoroketones.
Collapse
Affiliation(s)
- Jing Gui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jianguo Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhiming Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
10
|
Mengmeng G, Zilun Y, Yulan C, Danhua G, Mengtao M, Zhiliang S, Xueqiang C. Difluorinated Silyl Enol Ethers as Fluorine-Containing Building Blocks for the Synthesis of Organofluorine Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zhu X, Huang Y, Xu X, Qing F. Iron-catalyzed cyanoalkylation of difluoroenol silyl ethers with cyclobutanone oxime esters. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
13
|
He JX, Zhang ZH, Mu BS, Cui XY, Zhou J, Yu JS. Catalyst-Free and Solvent-Controlled Divergent Synthesis of Difluoromethylene-Containing S-Heterocycles. J Org Chem 2021; 86:9206-9217. [DOI: 10.1021/acs.joc.1c00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Zhi-Hao Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Yuan Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
14
|
Shi Y, Pan BW, He JX, Zhou Y, Zhou J, Yu JS. Construction of gem-Difluoroenol Esters through Catalytic O-Selective Addition of Difluoroenoxysilanes to Ketenes. J Org Chem 2021; 86:7797-7805. [DOI: 10.1021/acs.joc.1c00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
15
|
Huang QP, Huang Y, Wang AJ, Zhao L, Jia J, Yu Y, Tong J, Gu J, He CY. Visible light induced deaminative alkylation of difluoroenoxysilanes: a transition metal free strategy. Org Chem Front 2021. [DOI: 10.1039/d1qo00507c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible-light-promoted deaminative alkylation of difluoroenoxysilanes utilizing Hantzsch ester as a catalyst or through substrate-induced pathway have been demonstrated.
Collapse
Affiliation(s)
- Qi-Ping Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Yang Huang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - An-Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Yanbo Yu
- School of Medicine
- Washington University in St. Louis
- St. Louis
- USA
| | - Jie Tong
- School of Medicine
- Yale University
- New Haven
- USA
| | - Jiwei Gu
- School of Medicine
- Washington University in St. Louis
- St. Louis
- USA
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Zunyi Medical University
- Zunyi
- P. R. China
| |
Collapse
|
16
|
Li J, Xi W, Zhong R, Yang J, Wang L, Ding H, Wang Z. HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes. Chem Commun (Camb) 2021; 57:1050-1053. [DOI: 10.1039/d0cc06980a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hexafluoroisopropanol (HFIP)-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes is developed.
Collapse
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Wenxue Xi
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Rong Zhong
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| | - Hanfeng Ding
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou 318000
- P. R. China
| |
Collapse
|
17
|
Rong MY, Li JS, Zhou Y, Zhang FG, Ma JA. Catalytic Enantioselective Synthesis of Difluoromethylated Tetrasubstituted Stereocenters in Isoindolones Enabled by a Multiple-Fluorine System. Org Lett 2020; 22:9010-9015. [DOI: 10.1021/acs.orglett.0c03406] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meng-Yu Rong
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jin-Shan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yin Zhou
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Binhai New City, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Binhai New City, P. R. China
| |
Collapse
|