1
|
Son SD, Choi HY, Ko HM. B(C 6F 5) 3-Catalyzed Reductive Deoxygenation of Isatins for Indole Synthesis. J Org Chem 2025; 90:5662-5671. [PMID: 40207974 DOI: 10.1021/acs.joc.5c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
An efficient method for reductive deoxygenation of isatin derivatives using catalyst B(C6F5)3 and methylphenylsilane is described. This reaction proceeds rapidly under mild conditions, and the protocol provides a broad substrate scope. Notably, while general synthetic methods utilizing a combination of B(C6F5)3 and hydrosilanes smoothly reduce indoles to generate indolines, the present strategy represents the first reductive deoxygenation reaction for the formation of indoles without further reduction.
Collapse
Affiliation(s)
- Seung Deok Son
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Hoe Young Choi
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Haye Min Ko
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| |
Collapse
|
2
|
Gavit AV, Talekar SS, Mane MV, Sawant DN. Aryl Borane as a Catalyst for Dehydrative Amide Synthesis. J Org Chem 2025. [PMID: 39883055 DOI: 10.1021/acs.joc.4c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Tris(pentafluorophenyl)borane B(C6F5)3·H2O is reported as a catalyst for dehydrative amidation of carboxylic acids and amines. This protocol is applicable across a wide range of >35 substrates, including aromatic and aliphatic amines and acids, resulting in amides in ≤92% yields. The scalability of the reaction up to 10 mmol, along with the synthesis of drugs such as ibuprofen amide, moclobemide, and phenacetin, demonstrates the industrial potential of our protocol.
Collapse
Affiliation(s)
- Amit Vinayak Gavit
- CatOM Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjana S Talekar
- Centre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be University), Bangalore 562112, Karnataka, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be University), Bangalore 562112, Karnataka, India
| | - Dinesh Nanaji Sawant
- CatOM Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Nasibullina ER, Mendogralo EY, Merkushev AA, Makarov AS, Uchuskin MG. Oxidative Transformation of 2-Furylanilines into Indolin-3-ones. J Org Chem 2024; 89:6602-6606. [PMID: 38635314 DOI: 10.1021/acs.joc.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Oxidation of 2-furylaninlies with m-CPBA followed by treatment with a base provides access to functionalized indolin-3-ones. The designed oxidative transformation utilizes an underassessed chemical behavior of furyl-containing amines to form a C-N bond via engaging a β-carbon atom of the furan core upon a ring-forming step, thereby providing an alternative disconnection toward nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton A Merkushev
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| |
Collapse
|
4
|
Park SY, Kim J, Ko HM. Modified Chemoselective Reduction and Consecutive Regioselective Deuteration Reaction Catalyzed by B(C 6F 5) 3. J Org Chem 2023; 88:1996-2005. [PMID: 36716117 DOI: 10.1021/acs.joc.2c02137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient chemoselective reduction of isatin derivatives using catalyst B(C6F5)3, benzyldimethylsilane, and H2O is described. Notably, a small amount of water is shown to be a highly effective reaction promoter that decreases the reaction time and temperature for the synthesis of indolin-3-ones. Moreover, using method, excellent deuterium incorporation is achieved via the catalytic α-deuteration of indolin-3-ones using B(C6F5)3 and D2O.
Collapse
Affiliation(s)
- Se Yeon Park
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jaehwan Kim
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Haye Min Ko
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| |
Collapse
|
5
|
Chen X, Wang Z, Zhou J, Liu Y, Jin H, Zhou B. Nickel-catalyzed remote hydrosilylation of unconjugated enones with bulky triphenylsilane. Org Biomol Chem 2021; 19:8021-8024. [PMID: 34490432 DOI: 10.1039/d1ob01477c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a nickel-catalyzed remote hydrosilylation of unconjugated enones with bulky triphenylsilane. A range of Z-silyl enol ethers are obtained as major isomers due to the process of nickel triggered alkene isomerization. Notably, some specific alkyl silyl enol ethers can be prepared from this protocol, which are not easily accessed by the traditional strategy using a strong base and chlorosilane. This reaction features 100% atom economy, simple reaction conditions, and good yields.
Collapse
Affiliation(s)
- Xue Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jinyong Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Kumar G, Roy S, Chatterjee I. Tris(pentafluorophenyl)borane catalyzed C-C and C-heteroatom bond formation. Org Biomol Chem 2021; 19:1230-1267. [PMID: 33481983 DOI: 10.1039/d0ob02478c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of boron based Lewis acids have been reported to date, but among them, tris(pentafluorophenyl)borane (BCF) has gained the most significant attention in the synthetic chemistry community. The viability of BCF as a potential Lewis acid catalyst has been vastly explored in organic and materials chemistry due to its thermal stability and commercial availability. Most explorations of BCF chemistry in organic synthesis has occurred in the last two decades and many new catalytic reactivities are currently under investigation. This review mainly focuses on recent reports from 2018 onwards and provides a concise knowledge to the readers about the role of BCF in metal-free catalysis. The review has mainly been categorized by different types of organic transformation mediated through BCF catalysis for the C-C and C-heteroatom bond formation.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|