1
|
Bai L, Tu D, Deng P, Chen Y, Tang Q. Electrophilic aromatic substitution of electron-rich arenes with N-fluorobenzenesulfonimide (NFSI) as an electrophile. RSC Adv 2024; 14:34811-34815. [PMID: 39483384 PMCID: PMC11526033 DOI: 10.1039/d4ra07008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024] Open
Abstract
An efficient amidation of electron-rich arenes using NFSI as a nitrogen source has been successfully disclosed. This amidation process can be easily conducted at elevated temperatures, without the need for catalysts or additives. A wide range of arenes substituted with hydroxy, alkoxy, or carbonyl groups were found to be compatible, yielding the desired amination products. Computational study shows that the amidation proceeds via an electrophilic aromatic substitution pathway, comprising a three-step process that includes substitution, addition, and elimination, which differs slightly from the classical mechanism.
Collapse
Affiliation(s)
- Lina Bai
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Dewei Tu
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Ping Deng
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Yongjie Chen
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Qiang Tang
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| |
Collapse
|
2
|
Yuan H, Ji M, Xue H, Chen H, Zhang Y. Understanding the hydration of arylacetylenes to synthesize the carbonyl compounds via electroreduction of bromide intermediates. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Li L, Liu Y, Zhou S, Li J, Qi C, Zhang F. Synthesis of 4-hydroxy-3-benzoylpyridin-2(1 H)-one derivatives using pyrrolidine as catalyst. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2177872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Linbo Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuxiao Liu
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shujing Zhou
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jinjing Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chenze Qi
- School of Pharmacy, Jiamusi University, Jiamusi, China
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| |
Collapse
|
4
|
Kang QQ, Wang ZY, Hu SJ, Luo CM, Cai XE, Sun YB, Li T, Wei WT. Copper-catalyzed switchable cyclization of alkyne-tethered α-bromocarbonyls: selective access to quinolin-2-ones and quinoline-2,4-diones. Org Chem Front 2022. [DOI: 10.1039/d2qo01240e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper-catalyzed cyclization of alkynes has played a significant role in modern catalytic chemistry.
Collapse
Affiliation(s)
- Qing-Qing Kang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zi-Ying Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
5
|
|
6
|
Abstract
An efficient, simple, and metal-free fluorination of 2H-indazoles has been developed using N-fluorobenzenesulfonimide (NFSI) in water under ambient air. This transformation provides direct access to fluorinated indazole derivatives with broad functionalities in satisfactory yields. The experimental results suggest a radical mechanistic pathway of this protocol.
Collapse
Affiliation(s)
- Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
7
|
Gujjarappa R, Vodnala N, Kandpal A, Roy L, Gupta S, Malakar CC. C sp–C sp bond cleavage and fragment coupling: a transition metal-free “extrusion and recombination” approach towards synthesis of 1,2-diketones. Org Chem Front 2021. [DOI: 10.1039/d1qo00848j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A metal-free strategy for C–C bond activation of 1,3-diynes has been established via an “extrusion and recombination” approach to derive structurally important 1,2-diketones in good yields with excellent selectivity.
Collapse
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Nagaraju Vodnala
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
- Department of Chemistry, Multi-storey building, HauzKhas, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ashish Kandpal
- Institute of Chemical Technology Mumbai – IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai – IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Sreya Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, India
| | - Chandi C. Malakar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| |
Collapse
|
8
|
Tang L, Yang F, Yang Z, Chen H, Cheng H, Zhang S, Zhou Q, Rao W. Application of Bifunctional 2-Amino-1,4-naphthoquinones in Visible-Light-Promoted Photocatalyst-Free Alkene Perfluoroalkyl-Alkenylation. Org Lett 2020; 23:519-524. [PMID: 33382626 DOI: 10.1021/acs.orglett.0c04036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and practical photochemical strategy for intermolecular perfluoroalkyl-alkenylation of alkenes with 2-amino-1,4-naphthoquinones and perfluoroalkyl iodides has been demonstrated under visible-light irradiation. Mechanistic studies reveal that easily available 2-amino-1,4-naphthoquinone substrates can serve as efficient photosensitizers to activate perfluoroalkyl iodides through a photoredox process. Therefore, the developed radical relay reaction proceeds smoothly without additional transition metals and photocatalysts.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.,Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hanfei Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuaifei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|