1
|
Yu S, Yu JT, Pan C. Advances in the synthesis of functionalized tetrahydropyridazines from hydrazones. Org Biomol Chem 2024; 22:7753-7766. [PMID: 39206967 DOI: 10.1039/d4ob01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The tetrahydropyridazine motif is widely present in plenty of natural products and biologically active molecules. Easily prepared from the condensation of carbonyls with hydrazines, hydrazones are versatile synthetic building blocks that are frequently used in organic synthesis. Hydrazones are also utilized in the synthesis of nitrogen-containing molecules, especially nitrogen-containing heterocycles. The presence of the CN-N unit in the product makes hydrazones ideal substrates for the synthesis of tetrahydropyridazine derivatives. Here, in this review, we summarize the recent progress in the construction of variously substituted tetrahydropyridazines from different hydrazone derivatives together with mechanism discussions.
Collapse
Affiliation(s)
- Sheng Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
2
|
Li J, Wang Y, Wang Y, Zhai L, Huang J, Song L, You H, Chen FE. Desymmetrization of Inert meso-Diethers through Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Org Lett 2024; 26:5844-5849. [PMID: 38950387 DOI: 10.1021/acs.orglett.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert meso-diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of meso-diethers exploits a direct anti-SN2' pathway, in the absence of an in situ-generated allyl bromine intermediate. The following oxidative addition is the crucial rate-determining and enantioselectivity-determining step.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lianjie Zhai
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Xu S, Xu W, Dong S, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Cascade Hydrogenation of 3-Substituted Chromones for the Synthesis of Corresponding Chiral Chromanols. Chemistry 2024; 30:e202400978. [PMID: 38695858 DOI: 10.1002/chem.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 06/15/2024]
Abstract
An efficient RuPHOX-Ru catalyzed asymmetric cascade hydrogenation of 3-substituted chromones has been achieved under mild reaction conditions, affording the corresponding chiral 3-substituted chromanols in high yields with excellent enantio- and diastereoselectivities (up to 99 % yield, >99 % ee and >20 : 1 dr). Control reactions and deuterium labelling experiments revealed that a dynamic kinetic resolution process occurs during the subsequent hydrogenation of the C=O double bond, which is responsible for the high performance of the asymmetric cascade hydrogenation. The resulting products allow for several transformations and it was shown that the protocol provides a practical and alternative strategy for the synthesis of chiral 3-substituted chromanols and their derivatives.
Collapse
Affiliation(s)
- Shaofeng Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqi Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
5
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
6
|
Mao HL, Wang YX, Wang X, Wang HY, Hao WJ, Jiang B. Pd-Catalyzed Asymmetric Annulative Dearomatization of Phenols for Regio- and Enantioselective Synthesis of Spirocyclohexadienones. Org Lett 2023; 25:5963-5968. [PMID: 37540111 DOI: 10.1021/acs.orglett.3c02051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A palladium-catalyzed asymmetric annulative dearomatization of phenols with butene dicarbonate is reported, enabling twofold decarboxylative allylation to regioselectively produce a range of spirocyclohexadienones with 29-95% yields and 74-99% ee. A catalytic dearomative formal [4 + 2] cyclization of 1,1'-biphenyl-2,4'-diols delivered spiro[chromane-4,1'-cyclohexane]-2',5'-dien-4'-ones with high enantioselectivity, whereas enantioenriched spiro[cyclohexane-1,4'-quinoline]-2,5-dien-4-ones were generated starting from 2'-amino-[1,1'-biphenyl]-4-ols as 1,4-dinucleophiles.
Collapse
Affiliation(s)
- Hui-Lin Mao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Xin Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai-Ying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
7
|
Chen LQ, Zhu CF, Zhang S, Liu BY, Tu SJ, Hao WJ, Jiang B. Palladium-catalyzed annulative allylic alkylation for regioselective construction of indole-fused medium-sized cyclic ethers. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Ying S, Liu X, Guo T, Li X, Zhou M, Wang X, Zhu M, Jiang H, Gui QW. Ultrasound-assisted bromination of indazoles at the C3 position with dibromohydantoin. RSC Adv 2022; 13:581-585. [PMID: 36605629 PMCID: PMC9773018 DOI: 10.1039/d2ra06867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bromoaryl compounds have attracted great attention in organic chemistry, especially for the synthesis of pharmaceutical intermediates. Herein, we demonstrated a novel and efficient bromination protocol of indazoles via C-H bond cleavage to give site-specific 3-bromide products that could be further employed as synthetic blocks to prepare drugs. The reaction used DBDMH as a bromine source, tolerated a wide range of indazoles, and finished in 30 min under mild, ultrasound-assisted conditions. Besides, preliminary mechanistic studies revealed that this approach was not a radical process.
Collapse
Affiliation(s)
- Shengneng Ying
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Xingru Liu
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Tao Guo
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Xuan Li
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Min Zhou
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Xia Wang
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Mengxue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural UniversityChangsha 410082HunanP. R. China
| |
Collapse
|
9
|
Wang X, Mao HL, Yang YH, Jiang H, Chen LQ, Tu SJ, Hao WJ, Jiang B. Regio- and Enantioselective Synthesis of Dihydropyrido[1,2- a]indoles via Catalytic Asymmetric Annulative Allylic Alkylation. J Org Chem 2022; 87:15644-15652. [PMID: 36322841 DOI: 10.1021/acs.joc.2c01873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A palladium-catalyzed asymmetric annulative allylic alkylation reaction of 2-[(1H-indol-2-yl)methyl]malonates with (E)-but-2-ene-1,4-diyl dicarbonates is described, leading to the regio- and enantioselective synthesis of dihydropyrido[1,2-a]indoles with a chiral cyclic allyl stereocenter adjacent to the ring-junction nitrogen atom in moderate to good yields. The salient features of this protocol include mild conditions, a broad substrate scope, and good compatibility with substituents as well as high regio- and stereoselectivities, providing a catalytic asymmetric entry for fabricating chiral pyridoindole scaffolds.
Collapse
Affiliation(s)
- Xue Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hui-Lin Mao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yu-Heng Yang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ling-Qi Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
10
|
Sun Y, Ma C, Li Z, Zhang J. Palladium/GF-Phos-catalyzed asymmetric carbenylative amination to access chiral pyrrolidines and piperidines. Chem Sci 2022; 13:11150-11155. [PMID: 36320471 PMCID: PMC9517724 DOI: 10.1039/d2sc03999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
The cross-coupling of N-tosylhydrazones has emerged as a powerful method for the construction of structurally diverse molecules, but the development of catalytic enantioselective versions still poses considerable challenges and only very limited examples have been reported. We herein report an asymmetric palladium/GF-Phos-catalyzed carbenylative amination reaction of N-tosylhydrazones and (E)-vinyl iodides pendent with amine, which allows facile access to a range of chiral pyrrolidines and piperidines in good yields (45-93%) with up to 96.5 : 3.5 er. Moreover, mild conditions, general substrate scope, scaled-up preparation, as well as the efficient synthesis of natural product (-)-norruspoline are practical features of this method.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Chun Ma
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zhiming Li
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
- Zhuhai Fudan Innovation Institute Hengqing District Zhuhai 519000 China
| |
Collapse
|
11
|
Zheng Y, Dong S, Xu K, Liu D, Zhang W. Pd-Catalyzed Asymmetric Allylic Substitution Cascade of Substituted 4-Hydroxy-2 H-pyrones with meso-Allyl Dicarbonates. Org Lett 2022; 24:3440-3444. [PMID: 35544680 DOI: 10.1021/acs.orglett.2c00937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An efficient Pd-catalyzed asymmetric allylic substitution cascade of 4-hydroxy-2H-pyrones with meso-allyl dicarbonates has been developed for the synthesis of kinetic chiral tetrahydro-1H-pyrano[4,3-b]benzofuran-1-one products in ≤87% yield and ≤99% ee. The protocol was achieved via a temperature-controlled kinetic control process, which has been illustrated by means of the experimental results and control experiments. The reaction could be conducted on a gram scale, and the resulting product allows for several transformations.
Collapse
Affiliation(s)
- Yan Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kai Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
12
|
Wang L, Zhai L, Chen J, Gong Y, Wang P, Li H, She X. Catalyst-Free 1,2-Dibromination of Alkenes Using 1,3-Dibromo-5,5-dimethylhydantoin (DBDMH) as a Bromine Source. J Org Chem 2022; 87:3177-3183. [PMID: 35133816 DOI: 10.1021/acs.joc.1c02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct 1,2-dibromination method of alkenes is realized using 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) as a bromine source. This reaction proceeds under mild reaction conditions without the use of a catalyst and an external oxidant. Various sorts of alkene substrates are transformed into the corresponding 1,2-dibrominated products in good to excellent yields with broad substrate scope and exclusive diastereoselectivity. This method offers a green and practical approach to synthesize vicinal dibromide compounds.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Lele Zhai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Jinyan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Yulin Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
13
|
Li J, Ye J, Zhou J, Li J, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Hydrogenation of α-Substituted Tetralones via a Dynamic Kinetic Resolution. Chem Commun (Camb) 2022; 58:4905-4908. [DOI: 10.1039/d2cc01193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient RuPHOX-Ru catalyzed asymmetric hydrogenation of α-substituted tetralones via a dynamic kinetic resolution has been achieved for the synthesis of chiral tetrahydronaphthols. The mechanism study indicated that the hydrogenation...
Collapse
|
14
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Kumar P, Kumar P, Venkataramani S, Ramasastry SSV. Pd-Catalyzed Formal [3 + 3] Heteroannulation of Allylic gem-Diacetates: Synthesis of Chromene-Based Natural Products and Exploration of Photochromic Properties. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Prashant Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - S. S. V. Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| |
Collapse
|
16
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|