1
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Pavlíčková T, Stöckl Y, Marek I. Synthesis and Functionalization of Tertiary Propargylic Boronic Esters by Alkynyllithium-Mediated 1,2-Metalate Rearrangement of Borylated Cyclopropanes. Org Lett 2022; 24:8901-8906. [PMID: 36446049 PMCID: PMC9791689 DOI: 10.1021/acs.orglett.2c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Implementing the use of alkynyllithium reagents in a stereospecific 1,2-metalate rearrangement-mediated ring opening of polysubstituted cyclopropyl boronic esters provides a variety of tertiary pinacol boranes bearing adjacent tertiary or quaternary carbon stereocenters with high levels of diastereomeric purity. The potential of this strategy was demonstrated through a selection of α- and γ-functionalization of the propargyl boronic esters.
Collapse
Affiliation(s)
- Tereza Pavlíčková
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Yannick Stöckl
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
3
|
Augustin AU, Di Silvio S, Marek I. Borylated Cyclopropanes as Spring-Loaded Entities: Access to Vicinal Tertiary and Quaternary Carbon Stereocenters in Acyclic Systems. J Am Chem Soc 2022; 144:16298-16302. [PMID: 36041738 PMCID: PMC9479080 DOI: 10.1021/jacs.2c07394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we present the formation of acyclic frameworks
bearing
two consecutive stereocenters of either tertiary or quaternary nature
starting from easily accessible cyclopropenes. This holistic approach
involves a regio- and diastereoselective hydro- or carboborylation
of substituted cyclopropenyl esters. Formation of boronate complexes
of the latter via the addition of nucleophiles and subsequent stereospecific
1,2-migration with carbon–carbon bond cleavage delivered the
title compounds.
Collapse
Affiliation(s)
- André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Sergio Di Silvio
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
4
|
Liu B, Duan XY, Li J, Wu Y, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 2] Annulation of 3,3'-Bisoxindoles with α-Bromoenals: Enantioselective Construction of Contiguous Quaternary Stereocenters. Org Lett 2022; 24:5929-5934. [PMID: 35947030 DOI: 10.1021/acs.orglett.2c02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed enantio- and diastereoselective [3 + 2] annulation of α-bromoenals with bisoxindoles is developed, affording efficient access to various spirocyclic bisoxindole alkaloids. This protocol tolerates a broad substrates scope, with various spirocyclic bisoxindoles obtained in generally excellent enantioselectivities. More importantly, two contiguous sterically congested all-carbon quaternary stereocenters are successfully created during this process.
Collapse
Affiliation(s)
- Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Jiahan Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yatong Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
5
|
Chang TY, Adrion DM, Meyer AR, Lopez SA, Garcia-Garibay MA. A Green Chemistry Approach toward the Stereospecific Synthesis of Densely Functionalized Cyclopropanes via the Solid-State Photodenitrogenation of Crystalline 1-Pyrazolines. J Org Chem 2022; 87:2277-2288. [PMID: 35041410 DOI: 10.1021/acs.joc.1c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyclopropane ring features prominently in active pharmaceuticals, and this has spurred the development of synthetic methodologies that effectively incorporate this highly strained motif into such molecules. As such, elegant solutions to prepare densely functionalized cyclopropanes, particularly ones embedded within the core of complex structures, have become increasingly sought-after. Here we report the stereospecific synthesis of a set of cyclopropanes with vicinal quaternary stereocenters via the solvent-free solid-state photodenitrogenation of crystalline 1-pyrazolines. Density functional theory calculations at the M062X/6-31+G(d,p) level of theory were used to determine the origin of regioselectivity for the synthesis of the 1-pyrazolines; favorable in-phase frontier molecular orbital interactions are responsible for the observation of a single pyrazoline regioisomer. It was also shown that the loss of N2 may take place via a highly selective solid-state thermal reaction. Scalability of the solid-state photoreaction is enabled through aqueous nanocrystalline suspensions, making this method a "greener" alternative to effectively facilitate the construction of cyclopropane-containing molecular scaffolds.
Collapse
Affiliation(s)
- Trevor Y Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alana Rose Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
7
|
Sureshan KM, Khazeber R. Topochemical Ene-Azide Cycloaddition Reaction. Angew Chem Int Ed Engl 2021; 60:24875-24881. [PMID: 34379367 DOI: 10.1002/anie.202109344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/10/2022]
Abstract
Topochemical reactions, high-yielding solid-state reactions arising from the proximal alignment of reacting partners in the crystal lattice, do not require solvents, catalysts, and additives are of high demand in the context of green processes and environmental safety. However, the bottleneck is the limited number of reactions that can be done in the crystal medium. We present the topochemical ene-azide cycloaddition (TEAC) reaction, wherein alkene and azide groups undergo lattice-controlled cycloaddition reaction giving triazoline in crystals. A designed monomer that arranges in a head-to-tail manner in its crystals pre-organizing the reacting groups of adjacent molecules in proximity undergoes spontaneous cycloaddition reaction in a single-crystal-to-single-crystal fashion, yielding the triazoline-linked polymer. A unique advantage of this reaction is that the triazoline can be converted to aziridine by simple heating, which we exploited for the otherwise challenging post-synthetic backbone modification of the polymer. This reaction may revolutionize the field of polymer science.
Collapse
Affiliation(s)
- Kana M Sureshan
- Indian Institute of Science Education and Research, School of Chemistry, Thiruvananthapuram, Maruthamala, 695551, Thiruvananthapuram, INDIA
| | - Ravichandran Khazeber
- Indian Institute of Science Education and Research Thiruvananthapuram, School of Chemistry, Maruthamala, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
8
|
Abstract
X-ray crystallography is an invaluable tool in design and development of organometallic catalysis, but application typically requires species to display sufficiently high solution concentrations and lifetimes for single crystalline samples to be obtained. In crystallo organometallic chemistry relies on chemical reactions that proceed within the single-crystal environment to access crystalline samples of reactive organometallic fragments that are unavailable by alternate means. This highlight describes approaches to in crystallo organometallic chemistry including (a) solid-gas reactions between transition metal complexes in molecular crystals and diffusing small molecules, (b) reactions of organometallic complexes within the extended lattices of metal-organic frameworks (MOFs), and (c) intracrystalline photochemical transformations to generate reactive organometallic fragments. Application of these methods has enabled characterization of catalytically important transient species, including σ-alkane adducts of transition metals, metal alkyl intermediates implicated in metal-catalyzed carbonylations, and reactive M-L multiply bonded species involved in C-H functionalization chemistry. Opportunities and challenges for in crystallo organometallic chemistry are discussed.
Collapse
Affiliation(s)
- Kaleb A Reid
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| | - David C Powers
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio- and Diastereoselective Copper-Catalyzed Carbomagnesiation for the Synthesis of Penta- and Hexa-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:11804-11808. [PMID: 33742749 DOI: 10.1002/anie.202102509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/07/2022]
Abstract
Despite the highly strained nature of cyclopropanes possessing three vicinal quaternary carbon stereocenters, the regio- and diastereoselective copper-catalyzed carbomagnesiation reaction of cyclopropenes provides an easy and efficient access to these novel persubstituted cyclopropyl cores with a complete regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Laura Levy
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
10
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio‐ and Diastereoselective Copper‐Catalyzed Carbomagnesiation for the Synthesis of Penta‐ and Hexa‐Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - André U. Augustin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Laura Levy
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
11
|
Dotson JJ, Liepuoniute I, Bachman JL, Hipwell VM, Khan SI, Houk KN, Garg NK, Garcia-Garibay MA. Taming Radical Pairs in the Crystalline Solid State: Discovery and Total Synthesis of Psychotriadine. J Am Chem Soc 2021; 143:4043-4054. [PMID: 33682403 PMCID: PMC8292139 DOI: 10.1021/jacs.1c01100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Solid-state photodecarbonylation is an attractive but underutilized methodology to forge hindered C-C bonds in complex molecules. This study discloses the use of this reaction to assemble the vicinal quaternary stereocenter motif present in bis(cyclotryptamine) alkaloids. Our strategy was enabled by experimental and computational investigations of the role of substrate conformation on the success or failure of the solid-state photodecarbonylation reaction. This informed a crystal engineering strategy to optimize the key step of the total synthesis. Ultimately, this endeavor culminated in the successful synthesis of the bis(cyclotryptamine) alkaloid "psychotriadine," which features the elusive piperidinoindoline framework. Psychotriadine, a previously unknown compound, was identified in the extracts of the flower Psychotria colorata, suggesting it is a naturally occurring metabolite.
Collapse
Affiliation(s)
- Jordan J Dotson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ieva Liepuoniute
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - J Logan Bachman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Vince M Hipwell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Saeed I Khan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|