1
|
Zhang F, Chen GQ, Zhang X. Design and Synthesis of Diphosphine Ligands Based on the Chiral Biindolyl Scaffold and Their Application in Transition-Metal Catalysis. Org Lett 2024; 26:1623-1628. [PMID: 38363721 DOI: 10.1021/acs.orglett.3c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
An extremely concise, scalable, and stereoselective synthesis of a privileged chiral skeleton based on 2,2'-biindolyl and commercially available chiral building blocks has been developed. This novel skeleton allows for easy access to a range of bisphosphine ligands (decagram scale, up to 58% total yield, only three steps). The synthetic method is characterized by an efficient central-to-axial chirality transfer strategy. In particular, the superior performance of the ligands has been demonstrated in diverse reactions, including several asymmetric hydrogenations, asymmetric conjugate reductions, and cycloisomerization reactions, indicating a great potential for the application of the newly developed chiral backbones in further modifications and exploration of novel chiral ligands and catalysts.
Collapse
Affiliation(s)
- Fuhao Zhang
- Medi-X Pingshan and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xumu Zhang
- Medi-X Pingshan and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
2
|
He Y, Liu Q, Yang J, Liu Y, Zhang X, Fan X. Oxoammonium salt-promoted diverse functionalization of saturated cyclic amines with dinucleophiles. Chem Commun (Camb) 2023; 59:3874-3877. [PMID: 36916451 DOI: 10.1039/d2cc06936a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Oxoammonium salt-promoted diverse functionalization of saturated cyclic amines with different dinucleophiles under mild conditions is presented. Specifically, when thiocyanate is used as a 1,3-dinucleophile, hexahydrothiazolo[4,5-b]pyridin-2(3H)-one derivatives are formed via the formation of the β-TEMPO-tethered cyclic iminium ion as a key intermediate. By contrast, when benzene-1,2-diamine is used as a 1,4-dinucleophile, 2-alkylquinoxaline derivatives are afforded via generation of the β-oxo cyclic iminium ion as a key intermediate. In addition, the usefulness of 2-alkylquinoxalines is showcased through their facile conversion into N-(2-oxo-2-(quinoxalin-2-yl)ethyl)nitrous amides featuring the synthetically useful N-NO moiety and the carbonyl group.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Qimeng Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yunfei Liu
- The 22nd Research Institute of China Electronics Technology Group Corporation, Xinxiang, Henan 453003, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
3
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
4
|
Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
He Y, Liu Q, Yang J, Zheng Z, Chai GL, Zhang X, Fan X. Oxoammonium Salt-Promoted Multifunctionalization of Saturated Cyclic Amines Based On β-Oxo Cyclic Iminium Ion Intermediates. Org Lett 2022; 24:7839-7844. [PMID: 36264018 DOI: 10.1021/acs.orglett.2c03253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe a convenient method for multiple C(sp3)-H bond functionalization of saturated cyclic amines through oxoammonium salt-promoted oxidation to afford a β-oxo cyclic iminium ion as a key intermediate, followed by cascade addition with thiocyanate and diverse N-, O-, and S-containing nucleophiles in the green solvent and EtOH. Notably, chiral spiro azapolyheterocycles were prepared enantioselectively (>20:1 dr, up to 99% ee) when cysteine or serine esters were used as substrates. Moreover, the concise late-stage modification of several natural product derivatives was accomplished using this method.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Piticari A, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Stereoselective Palladium‐Catalyzed C(
sp
3
)−H Mono‐Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amalia‐Sofia Piticari
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Daniele Antermite
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - J. Harry Moore
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | | | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
7
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
8
|
Shao BR, Shi L, Zhou YG. Asymmetric hydrogenation of O-/N-functional group substituted arenes. Chem Commun (Camb) 2021; 57:12741-12753. [PMID: 34762082 DOI: 10.1039/d1cc04722a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric hydrogenation of aromatic compounds represents one of the most straightforward synthetic methods to construct important chiral cyclic skeletons that are often found in biologically active agents and natural products. So far, the most successful examples in this field are largely limited to aromatics containing alkyl and aryl substituted groups due to the poor functional-group tolerance of hydrogenation. Direct asymmetric hydrogenation of functionalized aromatics provides enormous potential for expanding the structural diversity of reductive products of planar aromatic compounds, which is highly desirable and has not been well studied. This feature article focuses on the progress in catalytic asymmetric hydrogenation and transfer hydrogenation of O/N substituted arenes.
Collapse
Affiliation(s)
- Bing-Ru Shao
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Lei Shi
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| |
Collapse
|
9
|
Park S, Lee S, Kim JH, Choi WJ, Kim S. Memory of Chirality in the Asymmetric Synthesis of Piperidines with Vicinal Stereocenters by Intramolecular Sn2' Reaction. Chem Asian J 2021; 16:3097-3101. [PMID: 34432952 DOI: 10.1002/asia.202100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Indexed: 11/10/2022]
Abstract
Intramolecular Sn2' cyclization of α-amino ester enolates provided piperidine derivatives with vicinal quaternary-tertiary stereocenters with excellent diastereo- and enantioselectivity via memory of chirality and the Thorpe-Ingold effect. DFT calculations provided a mechanistic rationale for the increase in chirality preservation via the Thorpe-Ingold effect. This new method has the potential to be integrated into concise asymmetric synthesis of bioactive molecules containing multisubstituted piperidine moieties.
Collapse
Affiliation(s)
- Seungbae Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seokwoo Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Hyun Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 410-820, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Li W, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. Chiral Indolizidine Synthesis through the Ir-Catalyzed Asymmetric Hydrogenation of Cyclic Pyridinium Salts. J Org Chem 2021; 86:10773-10781. [PMID: 34236870 DOI: 10.1021/acs.joc.1c00958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ir-catalyzed asymmetric hydrogenation of cyclic pyridinium salts is presented as a new strategy for the convenient and efficient synthesis of chiral indolizidines. The asymmetric hydrogenation of cyclic pyridinium salts derived from 2-(2-acylphenyl)pyridines proceeded smoothly in the presence of [Ir(cod)Cl]2 and (R)-DM-SegPhos to provide the desired chiral 7,8-benzoindolizidines 6 in high to excellent yields with moderate enantioselectivity (up to 86:14 er) and excellent diastereoselectivity (>20:1 dr). The enantiomeric purity of 6j was increased to 92:8 through recrystallization.
Collapse
Affiliation(s)
- Wenkuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.,Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|