1
|
Liang H, Wang Q, Zhou X, Zhang R, Zhou M, Wei J, Ni C, Hu J. N-Heteroaromatic Fluoroalkylation through Ligand Coupling Reaction of Sulfones. Angew Chem Int Ed Engl 2024; 63:e202401091. [PMID: 38489249 DOI: 10.1002/anie.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Ligand coupling on hypervalent main group elements has emerged as a pivotal methodology for the synthesis of functionalized N-heteroaromatic compounds in recent years due to the avoidance of transition metals and the mildness of the reaction conditions. In this direction, the reaction of N-heteroaryl sulfur(IV) and N-heteroaryl phosphorus(V) compounds has been well studied. However, the ligand coupling of sulfur(VI) is still underdeveloped and the reaction of alkyl N-heteroarylsulfones is still elusive, which does not match the high status of sulfones as the chemical chameleons in organic synthesis. Here we present a ligand coupling-enabled formal SO2 extrusion of fluoroalkyl 2-azaheteroarylsulfones under the promotion of Grignard reagents, which not only enriches the chemistry of sulfones, but also provides a novel and practical synthetic tool towards N-heteroaromatic fluoroalkylation.
Collapse
Affiliation(s)
- Huamin Liang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Qian Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Rongyi Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Min Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun Wei
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
2
|
Liu H, Jia M, Sun S, Xu X. Access to 2-thio/selenoquinolines via domino reaction of isocyanides with sulfur and selenium in water. Chem Commun (Camb) 2023; 59:14595-14598. [PMID: 37991823 DOI: 10.1039/d3cc04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A domino reaction of o-alkenylaryl isocyanides with elemental sulfur and selenium in pure water was developed for the efficient and green synthesis of quinoline-2-thione and diquinolyl diselenide derivatives. Mechanistical investigation reveals that intramolecular nucleophilic addition of an alkenyl group to the in situ generated isothio/isoselenocyanate accounts for the formation of a quinoline-ring. Moreover, this transformation is also amendable for the convenient preparation of 2-fluoromethylthio-/seleno-quinolines by a one-pot three-component reaction.
Collapse
Affiliation(s)
- Haitao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua, Sichuan 617000, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
3
|
Bugaenko DI, Tikhanova OA, Karchava AV. Synthesis of Quinoline-2-thiones by Selective Deoxygenative C -H/C -S Functionalization of Quinoline N-Oxides with Thiourea. J Org Chem 2023; 88:1018-1023. [PMID: 36594585 DOI: 10.1021/acs.joc.2c02433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Quinoline-2-thiones valuable for synthetic and medicinal chemistry applications were obtained with excellent regioselectivity employing a deoxygenative C-H functionalization of readily available quinoline-N-oxides with thiourea upon activation with triflic anhydride. Unlike the current methods, this approach provides general access to diverse quinoline-2-thiones functionalized with groups of different electronic natures. Experimental simplicity and good to high yields are advantages of this protocol. Given the high reactivity of quinoline-2-thiones, this method provides an entry point for the synthesis of diverse organosulfur quinoline scaffolds.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Olga A Tikhanova
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | | |
Collapse
|
4
|
Jiao J, Xiao F, Wang C, Zhang Z. Iodine-Promoted Metal-Free Cyclization and O/S Exchange of Acrylamides with Thiuram: One-Step Synthesis of Quinolino-2-thiones. J Org Chem 2022; 87:4965-4970. [DOI: 10.1021/acs.joc.1c03030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jing Jiao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fangtao Xiao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Cheng Wang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhipeng Zhang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Okamura H, Yasuno Y, Nakayama A, Kumadaki K, Kitsuwa K, Ozawa K, Tamura Y, Yamamoto Y, Shinada T. Selective oxidation of alcohol- d 1 to aldehyde- d 1 using MnO 2. RSC Adv 2021; 11:28530-28534. [PMID: 35478564 PMCID: PMC9037989 DOI: 10.1039/d1ra05405h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
The selective oxidation of alcohol-d1 to prepare aldehyde-d1 was newly developed by means of NaBD4 reduction/activated MnO2 oxidation. Various aldehyde-d1 derivatives including aromatic and unsaturated aldehyde-d1 can be prepared with a high deuterium incorporation ratio (up to 98% D). Halogens (chloride, bromide, and iodide), alkene, alkyne, ester, nitro, and cyano groups in the substrates are tolerated under the mild conditions. A facile method for deutrium incorporation into aldehydes by mild reduction of NaBD4 of aldehydes and MnO2 oxidation (98% D) is disclosed.![]()
Collapse
Affiliation(s)
- Hironori Okamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Atsushi Nakayama
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Katsushi Kumadaki
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Kohei Kitsuwa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Keita Ozawa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yusaku Tamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yuki Yamamoto
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| |
Collapse
|
6
|
Zhang XJ, Cheng YM, Zhao XW, Cao ZY, Xiao X, Xu Y. Catalytic asymmetric synthesis of monofluoroalkenes and gem-difluoroalkenes: advances and perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01630f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The latest achievements in the catalytic asymmetric synthesis of both monofluoro- and gem-difluoroalkenes are discussed.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Ya-Min Cheng
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Xiao-Wei Zhao
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ying Xu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
- Engineering Research Center for Water Environment and Health of Henan
| |
Collapse
|