1
|
Zhou H, Li Z, Chen J, Zhou S, Wang X, Zhang L, Chen J, Lv N. Synthesis of polysubstituted pyridazines via Cu-mediated C(sp 3)-C(sp 3) coupling/annulation of saturated ketones with acylhydrazones. Chem Commun (Camb) 2024; 60:9546-9549. [PMID: 39145417 DOI: 10.1039/d4cc02760d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pyridazine is a significant skeleton that widely exists in drugs and bioactive molecules. We herein describe expeditious approaches to access polysubstituted pyridazines from readily accessible unactivated ketones and acylhydrazones via Cu-promoted C(sp3)-C(sp3) coupling/cyclization sequences in a single-step fashion. Notably, the disparate 3,4,6-trisubstituted pyridazines and 3,5-disubstituted pyridazines could be obtained by tailoring the ketone's structure and reaction conditions. These transformations feature good functional group compatibility, excellent step-economy, and chemoselectivity. The potential synthetic utility of these conversions is illustrated by scale-up reactions and late-stage derivatizations of the as-prepared pyridazine products.
Collapse
Affiliation(s)
- Honggui Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Juehong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Si Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xinyu Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Linwei Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, China
| |
Collapse
|
2
|
Li W, Wang R, Li Z, Chen J, Zhang Y, Lv N. Convergent synthesis of triarylamines via Ni-catalyzed dual C(sp 2)-H amination from benzamides with benzohydroxamic acids. Chem Commun (Camb) 2023; 59:4360-4363. [PMID: 36946231 DOI: 10.1039/d3cc00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An unprecedented method of nickel-catalyzed dual C(sp2)-H amination of N-quinolylbenzamides with benzohydroxamic acids is developed to access triarylamines in one pot. For the first time, broad-spectrum hydroxylamine is employed as an amino source for C-H amination, featuring good chemo-selectivity and functional group tolerance. Furthermore, the catalytic system could be further extended to N-(pivaloyloxy)benzamide, dioxazolone, isocyanate and aniline for C-H amination.
Collapse
Affiliation(s)
- Wenwei Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Ruxue Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Zhang C, Shang Z, Li R, Xu X. DFT study on the mechanism of selectively oxidative C(sp2)–H/C(sp3)–H cross-coupling of benzamides with amides by nickel catalyst: Oxidant-controlled regioselectivity. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Li W, Zhou H, He Y, Zeng G, Zheng Y, Hu Y, Chen Z, Ge JY, Lv N, Chen J. Synthesis of Diverse γ-Lactams via Rh-Catalyzed C(sp 2)-H Addition to Aliphatic Nitriles. Org Lett 2022; 24:5090-5094. [PMID: 35830465 DOI: 10.1021/acs.orglett.2c01867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report an unprecedented pathway to access γ-lactams using acetonitrile analogues as coupling partners without oxidants, ligands, and Lewis acids. The reaction undergoes Rh-catalyzed C(sp2)-H addition to carbon-bound nitriles with the aid of an amide traceless auxiliary followed by an annulation sequence, featuring a broad substrate scope, good functional group tolerance, and excellent chemo/stereoselectivity. Scale-up reactions and late-stage derivatizations highlight the potential synthetic utility of this methodology. A plausible mechanism is proposed based on mechanistic investigations.
Collapse
Affiliation(s)
- Wenwei Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Honggui Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yequan He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ge Zeng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yumeng Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yangni Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jing-Yuan Ge
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Bi WZ, Zhang WJ, Li CY, Shao LH, Liu QP, Feng SX, Geng Y, Chen XL, Qu LB. Photoexcited sulfenylation of C(sp 3)-H bonds in amides using thiosulfonates. Org Biomol Chem 2022; 20:3902-3906. [PMID: 35502883 DOI: 10.1039/d2ob00557c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoexcited sulfenylation of C(sp3)-H bonds in amides is developed for the synthesis of sulfenyl amides using thiosulfonates as a sulfur source. In the presence of easily available and inexpensive Na2-eosin Y, TBHP and K2CO3, various sulfenyl amides can be obtained under the irradiation of blue light at room temperature.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lu-Hao Shao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qing-Pu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450046, China.
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
6
|
Muzart J. A Journey from June 2018 to October 2021 with N, N-Dimethylformamide and N, N-Dimethylacetamide as Reactants. Molecules 2021; 26:6374. [PMID: 34770783 PMCID: PMC8587108 DOI: 10.3390/molecules26216374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
A rich array of reactions occur using N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMAc) as reactants, these two amides being able to deliver their own H, C, N, and O atoms for the synthesis of a variety of compounds. This account highlights the literature published since June 2018, completing previous reviews by the author.
Collapse
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, CEDEX 2, 51687 Reims, France
| |
Collapse
|
7
|
Cao XT, Wei SN, Sun HT, Li M, Zheng ZL, Wang G. Iridium-catalyzed regioselective C-H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Adv 2021; 11:22000-22004. [PMID: 35480792 PMCID: PMC9034132 DOI: 10.1039/d1ra04450h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
We have developed a regioselective C-N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water. This method tactically linked the 1,2,4-thiadiazoles and sulfonamides together, and the novel molecules increased the diversity of 1,2,4-thiadiazoles which may have potential applications.
Collapse
Affiliation(s)
- Xian-Ting Cao
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Su-Ning Wei
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Hao-Tian Sun
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Meng Li
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Zuo-Ling Zheng
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Guannan Wang
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
8
|
Tsuzuki S, Sakurai S, Matsumoto A, Kano T, Maruoka K. Ni-Catalyzed C(sp 2)-H alkylation of N-quinolylbenzamides using alkylsilyl peroxides as structurally diverse alkyl sources. Chem Commun (Camb) 2021; 57:7942-7945. [PMID: 34286742 DOI: 10.1039/d1cc02983e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Ni-catalyzed direct C-H alkylation of N-quinolylbenzamides using alkylsilyl peroxides as alkyl-radical precursors is described. The reaction forms a new C(sp3)-C(sp2) bond via the selective cleavage of both C(sp3)-C(sp3) and C(sp2)-H bonds. This transformation shows a high functional-group tolerance and, due to the structural diversity of alkylsilyl peroxides, a wide range of alkyl chains including functional groups and complex structures can be introduced at the ortho-position of readily available N-quinolylbenzamide derivatives. Mechanistic studies suggest that the reaction involves a radical mechanism.
Collapse
Affiliation(s)
- Saori Tsuzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Shunya Sakurai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. and Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|