1
|
Lancaster BMJ, White AJP, Tighe CJ, Braddock DC. Bromophosphatation as a Mode of Chiral Phosphoric Acid Catalyst Deactivation as Elucidated by Kinetic Profiling. J Org Chem 2025. [PMID: 40391945 DOI: 10.1021/acs.joc.5c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
A BINOL-derived chiral phosphoric acid (R)-1 was shown by kinetic profiling to be deactivated during the catalytic bromoesterification of cyclohexene. The products of the deactivation were identified as diastereoisomeric phosphates (R,1R,2R)-3a and (R,1S,2S)-3b and are formed via an alkene bromophosphatation process where the phosphate of 1 behaves as a competitive nucleophile, as confirmed by authentic preparations of 3a and 3b from a stoichiometric bromophosphatation reaction. HPLC separation of the diastereoisomers gave pure 3a whose absolute and relative configurations were proven by single-crystal X-ray diffraction. The 31P{1H} NMR spectrum of phosphate 3a displayed four resonances despite 3a having just one phosphorus atom, and combined VT-NMR and DFT analysis revealed this to be a consequence of rotational isomerism about the 9-phenanthrene (Ar) bearing C3,3'-Ar bonds. Moreover, kinetic studies using variable time normalization analysis (VTNA) of the catalytic cyclohexene bromoesterification showed first order kinetics in all reactants. The amount of phosphates 3a and 3b formed under catalytic bromoesterification conditions was quantified, enabling tracking of the temporal catalyst 1 concentration and hence elucidation of first order kinetics in catalyst 1. A catalytic cycle consistent with these observations is proposed.
Collapse
Affiliation(s)
- Ben M J Lancaster
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Christopher J Tighe
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Imperial College Road, London SW7 2AZ, U.K
| | - D Christopher Braddock
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
2
|
Bautista-Nava J, Porras-Santos LF, Quintero L, Pérez-Bautista JA, López-Mendoza P, Sartillo-Piscil F. Oxa-Ferrier Rearrangement Reaction Mediated by TEMPO Cation and NaClO 2: Application to the Total Synthesis of Passifetilactones B and C. J Org Chem 2025; 90:6251-6260. [PMID: 40293861 PMCID: PMC12070465 DOI: 10.1021/acs.joc.5c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
The TEMPO+ (2,2,6,6-tetramethylpiperidine-N-oxyl cation) is a versatile chemical species commonly known as an oxidizing reagent. Nevertheless, its capability to act as a Lewis acid has been recently revealed. Here, we report a TEMPO+-promoted oxa-Ferrier rearrangement of glycals to chiral α,β-unsaturated δ-lactones using sodium chlorite (NaClO2) as a cheap and environmentally friendly oxidizing reagent. Since the vinylic oxocarbenium intermediate is trapped by chlorite ion to form a carbonyl group, we name this reaction as the "Oxa-Ferrier rearrangement". Accordingly, this reaction is suitable for various O-acetylated, O-benzoylated, and O-benzylated glycals, providing the corresponding α,β-unsaturated δ-lactones in moderate to good yield. Additionally, the synthetic utility of this methodology was applied to the synthesis and confirmation of the absolute configuration of passifetilactones B and C.
Collapse
Affiliation(s)
- Jocelyn Bautista-Nava
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570, Puebla, México
| | - Luis F. Porras-Santos
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570, Puebla, México
| | - Leticia Quintero
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570, Puebla, México
| | - José Alvano Pérez-Bautista
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570, Puebla, México
| | - Pedro López-Mendoza
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570, Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570, Puebla, México
| |
Collapse
|
3
|
Wang W, Song S, Jiao N. Late-Stage Halogenation of Complex Substrates with Readily Available Halogenating Reagents. Acc Chem Res 2024; 57:3161-3181. [PMID: 39303309 DOI: 10.1021/acs.accounts.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
ConspectusLate-stage halogenation, targeting specific positions in complex substrates, has gained significant attention due to its potential for diversifying and functionalizing complex molecules such as natural products and pharmaceutical intermediates. Utilizing readily available halogenating reagents, such as hydrogen halides (HX), N-halosuccinimides (NXS), and dichloroethane (DCE) reagents for late-stage halogenation shows great promise for expanding the toolbox of synthetic chemists. However, the reactivity of haleniums (X+, X = Cl, Br, I) can be significantly hindered by the presence of various functional groups such as hydroxyl, amine, amide, or carboxylic acid groups. The developed methods of late-stage halogenation often rely on specialized activating reagents and conditions. Recently, our group (among others) has put great efforts into addressing these challenges and unlocking the potential of these readily available HX, NXS, and DCE reagents in complex molecule halogenation. Developing new methodologies, catalyst systems, and reaction conditions further enhanced their utility, enabling the efficient and selective halogenation of intricate substrates.With the long-term goal of achieving selective halogenation of complex molecules, we summarize herein three complementary research topics in our group: (1) Efficient oxidative halogenations: Taking inspiration from naturally occurring enzyme-catalyzed oxidative halogenation reactions, we focused on developing cost-effective oxidative halogenation reactions. We found the combination of dimethyl sulfoxide (DMSO) and HX (X = Cl, Br, I) efficient for the oxidative halogenation of aromatic compounds and alkenes. Additionally, we developed electrochemical oxidative halogenation using DCE as a practical chlorinating reagent for chlorination of (hetero)arenes. (2) Halenium reagent activation: Direct electrophilic halogenation using halenium reagents is a reliable method for obtaining organohalides. However, compared to highly reactive reagents, the common and readily available NXS and dihalodimethylhydantoin (DXDMH) demonstrate relatively lower reactivity. Therefore, we focused on developing oxygen-centered Lewis base catalysts such as DMSO, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and nitromethane to activate NXS or DXDMH, enabling selective halogenation of bioactive substrates. (3) Halogenation of inert substrates: Some substrates, such as electron-poor arenes and pyridines, are inert toward electrophilic functionalization reactions. We devised several strategies to enhance the reactivity of these molecules. These strategies, characterized by mild reaction conditions, the ready availability and stability of catalysts and reagents, and excellent tolerance for various functional groups, have emerged as versatile protocols for the late-stage aromatic halogenation of drugs, natural products, and peptides. By harnessing the versatility and selectivity of these catalysts and methodologies, synthetic chemists can unlock new possibilities in the synthesis of halogenated compounds, paving the way for the development of novel functional materials and biologically active molecules.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences. Shanghai 200032, China
| |
Collapse
|
4
|
Porras-Santos LF, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, López-Mendoza P, Sartillo-Piscil F. Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation. J Org Chem 2024; 89:11281-11292. [PMID: 39102649 PMCID: PMC11334189 DOI: 10.1021/acs.joc.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO+ forming a type of glycal-TEMPO+ mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π*(O═N+) orbital [LP(O1) → π*(C1═C2), π*(C1═C2) → σ*(C3-O3), and LP(O6) → π*(O═N+)]. This enables the formation of the respective Ferrier glycosyl cation, which is trapped by various nucleophiles. The extended hyperconjugation (or double hyperconjugation) toward the π*(O═N+) orbital, which confers the Lewis acid character of the TEMPO cation, was supported by natural bond orbital analysis at the M06-2X/6-311+G** level of theory.
Collapse
Affiliation(s)
- Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Jacinto Sandoval-Lira
- Departamento de Ciencias Básicas, TecNM campus Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, San Martín Texmelucan 74120, Puebla, Mexico
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| |
Collapse
|
5
|
Beng TK, Kaur J, Anosike IS, Rentfro B, Newgard S. Revisiting the 1,3-azadiene-succinic anhydride annulation reaction for the stereocontrolled synthesis of allylic 2-oxopyrrolidines bearing up to four contiguous stereocenters. RSC Adv 2024; 14:16678-16684. [PMID: 38784414 PMCID: PMC11110166 DOI: 10.1039/d4ra03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Polysubstituted 2-oxopyrrolidines bearing at least two contiguous stereocenters constitute the core of several pharmaceuticals, including clausenamide (antidementia). Here, we describe a flexible annulation strategy, which unites succinic anhydride and 1,3-azadienes to produce allylic 2-oxopyrrolidines bearing contiguous stereocenters. The approach is chemoselective, efficient, modular, scalable, and diastereoselective. The scalable nature of the reactions offers the opportunity for post-diversification, leading to incorporation of motifs with either known pharmaceutical value or that permit subsequent conversion to medicinally relevant entities.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jasleen Kaur
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Benjamin Rentfro
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Shae Newgard
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
6
|
Shinde J, Kavala V, Yao CF. Pd-Catalyzed Regioselective (Markovnikov) Addition of Aryl Boronic Acids to Terminal Alkynes of 1,3-Dicarbonyl Compounds and Cyclization/Debenzoylation of Olefinic Dicarbonyl: Access to Arylated Pyran and ( E)-4-Methylene-1,6-diphenylhex-5-en-1-one. Org Lett 2023; 25:6943-6948. [PMID: 37713283 DOI: 10.1021/acs.orglett.3c02192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
This Letter outlines palladium-catalyzed regioselective (Markovnikov's) addition of aryl boronic acids to propargyl 1,3-dicarbonyl alkyne to accomplish olefinic/diene 1,3-dicarbonyl compounds without the need for water workup. This methodology showcases remarkable performance with wide-ranging substrate diversity, achieving high yields while employing merely 3 mol % [Pd] alongside a mild KOAc base. Moreover, the utility of dicarbonyl olefins is exemplified through their application in intramolecular cyclization and debenzoylation reactions to access valuable trisubstituted pyran building blocks and (E)-4-methylene-1,6-diphenylhex-5-en-1-one synthesis.
Collapse
Affiliation(s)
- Jivan Shinde
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road, Taipei 116, Taiwan R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road, Taipei 116, Taiwan R.O.C
| | - Ching-Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road, Taipei 116, Taiwan R.O.C
| |
Collapse
|
7
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
8
|
Yang J, Chan YY, Feng W, Tse YLS, Yeung YY. Study and Applications of Tetrasubstituted Hypervalent Selenium–Halogen Species in Catalytic Electrophilic Halogenations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Junjie Yang
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yung-Yin Chan
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weida Feng
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Beng TK, Borg C, Rodriguez MJ. Contra-thermodynamic halolactonization of lactam-tethered 5-aryl-4( E)-pentenoic acids for the flexible and stereocontrolled synthesis of fused lactam-halolactones. RSC Adv 2022; 12:28685-28691. [PMID: 36320547 PMCID: PMC9549391 DOI: 10.1039/d2ra04177d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Halolactonization of alkenoic acids enables the construction of oxygen-heterocycles via intramolecular halonium-induced nucleophilic addition. Although the literature is currently inundated with halolactonizations of 5-aryl-4(E)-pentenoic acids that predictably afford the 6-endo cyclization adducts, methods that reliably alter the innate regioselectivity bias to instead deliver the thermodynamically less favored 5-exo cyclization products are relatively rare. Here, we attempt to bridge this gap and have found mild conditions for contra-thermodynamic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids that lead to the formation of trans-fused lactam-γ-lactones. The natural proclivity for these 5-aryl-4(E)-pentenoic acids to undergo 6-endo cyclization is overridden and 5-exo-trig cyclization predominates. The success of the approach hinges on the use of N,N-dimethylformamide (DMF) as the solvent and N-methylmorpholine oxide as the catalyst. The lactam-lactone products are synthesized in high diastereoselectivity, modularity, and chemoselectivity. Notably, most of the bicycles contain one benzylic quaternary stereocenter as well as an α-alkoxy quaternary stereocenter. The contra-thermodynamic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids, under solvent- and catalyst-controlled conditions, has facilitated the efficient and stereocontrolled synthesis of halogenated fused γ-lactone-lactams.![]()
Collapse
Affiliation(s)
- Timothy K. Beng
- Department of Chemistry, Central Washington UniversityEllensburgWA 98926USA
| | - Claire Borg
- Department of Chemistry, Central Washington UniversityEllensburgWA 98926USA
| | | |
Collapse
|
10
|
Beng TK, Rodriguez MJ, Borg C. Stereocontrolled access to δ-lactone-fused-γ-lactams bearing angular benzylic quaternary stereocenters. RSC Adv 2022; 12:17617-17620. [PMID: 35765420 PMCID: PMC9194931 DOI: 10.1039/d2ra02167f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 01/16/2023] Open
Abstract
C-fused γ-lactam-lactones are resident in several bioactive molecules, including anticancer agents such as omuralide. In this embodiment, we report mild conditions for the catalytic halolactonization of lactam-tethered 5-aryl-4(E)-pentenoic acids. The use of dichloromethane as the solvent and Ph3P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
S as the catalyst led to predominant 6-endo-trig cyclization and furnished the trans-fused-γ-lactam-δ-lactones. The transformation is modular, regioselective, chemoselective, and diastereoselective. The γ-lactam-δ-lactones bear angular quaternary benzylic stereocenters, which is noteworthy since the presence of a quaternary carbon in bioactive small molecules often promotes an element of conformational restriction that imparts potency, selectivity, and metabolic stability. The generated halogen and lactone motifs are important functional handles for late-stage diversification. The catalytic halolactonization of readily affordable γ-lactam-tethered alkenoic acids has facilitated the site-selective, efficient, and stereocontrolled synthesis of halogenated fused γ-lactam-δ-lactones.![]()
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Morgan J Rodriguez
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Claire Borg
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
11
|
Iwabuchi Y, Nagasawa S. The Utility of Oxoammonium Species in Organic Synthesis: Beyond Alcohol Oxidation. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-sr(r)2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: Synthesis of bromomethylated γ-lactones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Kong Y, Cao T, Zhu S. TEMPO‐Regulated
Regio‐ and Stereoselective
Cross‐Dihalogenation
with Dual Electrophilic X
+
Reagents. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yi Kong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
14
|
Yeung YY, Wong J. Recent Advances in C–Br Bond Formation. Synlett 2021. [DOI: 10.1055/s-0037-1610772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook
Collapse
|
15
|
Wang W, Li X, Yang X, Ai L, Gong Z, Jiao N, Song S. Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nat Commun 2021; 12:3873. [PMID: 34162859 PMCID: PMC8222362 DOI: 10.1038/s41467-021-24174-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Electrophilic halogenation reactions have been a reliable approach to accessing organohalides. During the past decades, various catalytic systems have been developed for the activation of haleniums. However, there is still a short of effective catalysts, which could cover various halogenation reactions and broad scope of unsaturated compounds. Herein, TEMPO (2,2,6,6-tetramethylpiperidine nitroxide) and its derivatives are disclosed as active catalysts for electrophilic halogenation of olefins, alkynes, and aromatics. These catalysts are stable, readily available, and reactive enough to activate haleniums including Br+, I+ and even Cl+ reagents. This catalytic system is applicable to various halogenations including haloarylation of olefins or dibromination of alkynes, which were rarely realized in previous Lewis base catalysis or Lewis acid catalysis. The high catalytic ability is attributed to a synergistic activation model of electrophilic halogenating reagents, where the carbonyl group and the halogen atom are both activated by present TEMPO catalysis. Organohalides are widely used as synthetic precursors and target products, but for various halogenation reactions there is a need for effective catalysts to activate commercially available haleniums. Here, the authors report that TEMPO and its derivatives are active catalysts for electrophilic halogenation of olefins, alkynes and aromatics, under mild reaction conditions and with good functional group tolerance.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Lingsheng Ai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhiwen Gong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
16
|
Tian Y, Guo X, Li M, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. SBA-15 Supported 1-Methyl-2-azaadamanane N-Oxyl (1-Me-AZADO) as Recyclable Catalyst for Oxidation of Alcohol. Org Lett 2021; 23:3928-3932. [PMID: 33971715 DOI: 10.1021/acs.orglett.1c01058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we designed and synthesized an SBA-15 supported 1-methyl-2-azaadamanane N-oxyl (1-Me-AZADO) and investigated its catalytic performance for selective oxidation of alcohols under Anelli's conditions. The first example of immobilization of 1-Me-AZADO was very important to advance the oxgenation effectively because this supported N-oxyl has excellent catalytic activity for oxidation of alcohols to carbonyl compounds, and more importantly, it can be conveniently recovered and reused at least 6 times without significant effect on its catalytic efficiency.
Collapse
Affiliation(s)
- Yangwu Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaqun Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunmei Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
17
|
Wong J, Yeung YY. Solvent and catalyst-free bromofunctionalization of olefins using a mechanochemical approach. RSC Adv 2021; 11:13564-13570. [PMID: 35423890 PMCID: PMC8697521 DOI: 10.1039/d1ra01816g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Bromofunctionalizations of olefins are an important class of chemical transformations. N-Bromoimide reagents are commonly used in these reactions but catalysts and chlorinated solvents are often employed to achieve a reasonable reaction rate. In this report, we present a solvent and catalyst-free bromofunctionalization of olefins using mechanical force. Efficient bromofunctionalization of olefins including bromolactonization, bromocycloetherification, and intermolecular bromoesterification were achieved under solvent and catalyst-free conditions using a mechanochemical approach.![]()
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| | - Ying-Yeung Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| |
Collapse
|