1
|
Li YH, Hu XP. Copper-Catalyzed Enantioselective (3 + 3) Cycloaddition of Ethynyl Methylene Cyclic Carbamates with N, N'-Cyclic Azomethine Imines. Org Lett 2025; 27:4372-4377. [PMID: 40238994 DOI: 10.1021/acs.orglett.5c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A copper-catalyzed asymmetric cross 1,3-dipolar cycloaddition between 2-aminoallyl zwitterions generated in situ from ethynyl methylene cyclic carbamates and N,N'-cyclic azomethine imines has been realized. The reaction, which utilizes a commercially available chiral tridentate N-ligand, delivers a range of functionally rich chiral hexahydro-8H-pyrazolo[1,2-a][1,2,4]triazin-8-one derivatives in 51-99% yields with good to high enantioselectivities (44-95% ee).
Collapse
Affiliation(s)
- Ya-Hui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Rohilla S, Khan ZA, Singh VK. Copper-catalyzed enantioselective propargylic [3 + 2] cycloaddition: access to oxygen heterocycles featuring a CF 3-substituted quaternary stereocenter. Org Biomol Chem 2025. [PMID: 39967494 DOI: 10.1039/d4ob02043j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
A Cu(I)-Pybox-diPh catalyzed enantioselective [3 + 2] cycloaddition reaction of CF3-substituted tertiary propargylic esters as C2-bis-electrophiles with cyclic 1,3-dicarbonyl compounds as C,O-bis-nucleophiles has been reported. The methodology furnishes a variety of optically active oxygen heterocycles containing a CF3-substituted quaternary stereocenter in good yields and enantioselectivities. Moreover, the scalability of the reaction and transformations of chiral compounds into their derivatives demonstrated the synthetic and practical relevance of the approach.
Collapse
Affiliation(s)
- Shweta Rohilla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Zahid Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
3
|
Rohilla S, Ahmad Khan Z, Singh VK. Enantioselective Synthesis of Spirooxindole-Pyran and Furan Scaffolds via Copper-Catalyzed Formal (3+3) and (3+2) Cycloaddition of Isatin-Derived Propargylic Esters. Chemistry 2025; 31:e202404005. [PMID: 39665634 DOI: 10.1002/chem.202404005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Herein, we report a copper-catalyzed enantioselective formal (3+3) and (3+2) cycloaddition reaction of isatin-derived tertiary propargylic esters with N,N-dimethylbarbituric acid and 4-hydroxycoumarins, respectively. In this process, the tertiary propargylic ester serves as both C3- and C2-synthons, facilitating the synthesis of optically active spirooxindole-pyran and furan scaffolds featuring an all-carbon quaternary stereocenter. The reaction delivers these spirocyclic frameworks in good yields with high enantioselectivities. Additionally, the scalability of both the reactions and the transformation of chiral intermediates into valuable structures emphasize the synthetic and practical importance of this strategy.
Collapse
Affiliation(s)
- Shweta Rohilla
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Zahid Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| |
Collapse
|
4
|
Andatsu H, Terashima Y, Kawamura R, Matsuda Y, Takehara T, Suzuki T, Yasukawa N, Nakamura S. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of 2,2-Disubstituted 2,3-Dihydro-4-quinolones from Isatins and 2'-Aminoacetophenones. Org Lett 2025; 27:258-263. [PMID: 39718907 DOI: 10.1021/acs.orglett.4c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an in situ generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee. Detailed density functional theory (DFT) calculations support the proposed reaction mechanism and the origin of asymmetric induction.
Collapse
Affiliation(s)
- Hidenori Andatsu
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yuto Terashima
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Rio Kawamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Feng J, Wang Y, Li EQ, Loh TP. Recent Developments in Copper-Catalyzed Annulations for Synthesis of Spirooxindoles. CHEM REC 2024; 24:e202400126. [PMID: 39439210 DOI: 10.1002/tcr.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Indexed: 10/25/2024]
Abstract
Spirooxindoles represent a special scaffold for pharmaceuticals and natural products, and significant advancements have been achieved in their synthesis in recent years. Among these, transition metal catalysis, particularly copper catalysis, has emerged as an efficient and reliable method for the synthesis of spirooxindoles. Based on different reaction types, two distinct substrate types have been summarized and classified by us for constructing spirooxindole scaffolds via intramolecular and intermolecular annulations. This review outlines the latest advancements in copper-catalyzed cyclization reactions for synthesizing spirooxindoles and provides detailed insights into the types of annulation reactions and their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Er-Qing Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Zhang Z, Sun Y, Gong Y, Tang DL, Luo H, Zhao ZP, Zhou F, Wang X, Zhou J. Enantioselective propargylic amination and related tandem sequences to α-tertiary ethynylamines and azacycles. Nat Chem 2024; 16:521-532. [PMID: 38504025 DOI: 10.1038/s41557-024-01479-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Chiral α-tertiary amines and related azacycles are sought-after compounds for drug development. Despite progress in the catalytic asymmetric construction of aza-quaternary stereocentres, enantioselective synthesis of multifunctional α-tertiary amines remains underdeveloped. Enantioenriched α-disubstituted α-ethynylamines are attractive synthons for constructing chiral α-tertiary amines and azacycles, but methods for their catalytic enantioselective synthesis need to be expanded. Here we describe an enantioselective asymmetric Cu(I)-catalysed propargylic amination (ACPA) of simple ketone-derived propargylic carbonates to give both α-dialkylated and α-alkyl-α-aryl α-tertiary ethynylamines. Sterically confined pyridinebisoxazoline (PYBOX) ligands, with a C4 shielding group and relaying groups, play a key role in achieving excellent enantioselectivity. The syntheses of quaternary 2,5-dihydropyrroles, dihydroquinines, dihydrobenzoquinolines and dihydroquinolino[1,2-α]quinolines are reported, and the synthetic value is further demonstrated by the enantioselective catalytic total synthesis of a selective multi-target β-secretase inhibitor. Enantioselective Cu-catalysed propargylic substitutions with O- and C-centred nucleophiles are also realized, further demonstrating the potential of the PYBOX ligand.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Ying Sun
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Da-Liang Tang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hui Luo
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhi-Peng Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xin Wang
- College of Chemistry, Sichuan University, Chengdu, China.
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, P. R. China.
| |
Collapse
|
7
|
Zhu H, Xu L, Zhu B, Liao M, Li J, Han Z, Sun J, Huang H. Copper-Catalyzed Enantioselective Formal [4 + 1] and [3 + 3] Cycloaddition of Ethynylethylene Carbonates. Org Lett 2023; 25:9213-9218. [PMID: 38100085 DOI: 10.1021/acs.orglett.3c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Herein we employed ethynylethylene carbonates (EECs) to achieve formal [4 + 1] and [3 + 3] cycloaddition with cyclic 1,3-dicarbonyl compounds. On one hand, EECs with styryl substitution could undergo a remotely controlled enantioselective [4 + 1] cycloaddition reaction. This reaction exhibits good chemoselectivity, regioselectivity, and enantioselectivity. In addition, a [3 + 3] cycloaddition reaction of EECs with cyclic 1,3-dicarbonyl compounds was also achieved, leading to a series of 4H-pyrans with impressive chemoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Haihui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lixia Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Biao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (China)
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Prieto E, Martín JD, Nieto J, Andrés C. Enantioselective synthesis of 3-hydroxy- and 3-amino-3-alkynyl-2-oxindoles by the dimethylzinc-mediated addition of terminal alkynes to isatins and isatin-derived ketimines. Org Biomol Chem 2023; 21:6940-6948. [PMID: 37581278 DOI: 10.1039/d3ob01023f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A common protocol for enantioselective alkynylation of isatins and isatin-derived ketimines using terminal alkynes and Me2Zn in the presence of a catalytic amount of a chiral perhydro-1,3-benzoxazine with moderate to excellent enantioselectivity under mild reaction conditions is described. The additions to ketimines present a novel approach to chiral amines being derivatives of oxindoles. The reaction is broad in scope with respect to aryl- and alkyl-substituted terminal alkynes and isatin derivatives. In isatins, the alkynylation occurs at the Si face of the carbonyl group, whereas in the ketimine derivatives it occurs at the Re face of the imine.
Collapse
Affiliation(s)
- Elena Prieto
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | - Jorge D Martín
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | - Javier Nieto
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | - Celia Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| |
Collapse
|
9
|
Kong HH, Zhu C, Deng S, Xu G, Zhao R, Yao C, Xiang HM, Zhao C, Qi X, Xu H. Remote Enantioselective [4 + 1] Annulation with Copper-Vinylvinylidene Intermediates. J Am Chem Soc 2022; 144:21347-21355. [DOI: 10.1021/jacs.2c09572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Han-Han Kong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Cuiju Zhu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Shuang Deng
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guang Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ruinan Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chaochao Yao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hua-Ming Xiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chunhui Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
10
|
Wang JM, Zhao Y, Yao CS, Zhang K. Stereoselective synthesis of C3-tetrasubstituted oxindoles via copper catalyzed asymmetric propargylation. RSC Adv 2022; 12:26727-26732. [PMID: 36320842 PMCID: PMC9490778 DOI: 10.1039/d2ra04603b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, a copper catalyzed asymmetric propargylation of 2-oxindole-3-carboxylate esters with terminal propargylic esters is described. This strategy successfully provides a direct approach to constructing a broad range of chiral C3-tetrasubstituted oxindoles with contiguous tertiary and quaternary carbon stereocenters in high yields and excellent enantioselectivities (16 examples, up to 99% yield and 98% ee). Moreover, the diastereoisomers of the two newly formed stereocenters can be separated by silica gel chromatography, thereby providing a valuable stereoselective access to all four possible stereoisomers of C3-tetrasubstituted oxindoles.
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology Xuzhou 221018 P. R. China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering, Yan'an University Yan'an Shaanxi 716000 P. R. China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| |
Collapse
|
11
|
Yang X, Sun J, Huang X, Jin Z. Asymmetric Synthesis of Structurally Sophisticated Spirocyclic Pyrano[2,3- c]pyrazole Derivatives Bearing a Chiral Quaternary Carbon Center. Org Lett 2022; 24:5474-5479. [PMID: 35857420 DOI: 10.1021/acs.orglett.2c02211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-catalyzed enantio- and diastereoselective [2 + 4] cycloaddition reaction is developed for quick and efficient access to structurally complex multicyclic pyrano[2,3-c]pyrazole molecules. The reaction tolerates a broad scope of substrates bearing various substitution patterns, with the multicyclic pyrano[2,3-c]pyrazole products afforded in generally good to excellent yields and optical purities. The chiral molecules obtained from this approach has found promising applications in the development of novel bacteriacides for plant protection.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
12
|
Li L, Chen XS, Hu XP. Intramolecular Copper-Catalyzed Asymmetric Propargylic [4 + 2]- Cycloaddition toward Optically Active Tetrahydroisoindolo[2,1- a]quinoxalines. Org Lett 2022; 24:5433-5438. [PMID: 35856718 DOI: 10.1021/acs.orglett.2c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An intramolecular Cu-catalyzed asymmetric propargylic [4 + 2] cycloaddition of bis-N-nucleophile-functionalized propargylic esters has been realized in the support of a chiral tridentate N-ligand, (S,S)-Pybox-diOAc, leading to chiral tetrahydroisoindolo[2,1-a]quinoxalines in high yields and with good to excellent enantioselectivities. The reaction features high efficiency, simplicity, and broad substrate scope, thus providing a powerful and concise strategy for stereoselective access to optically active polycyclic heterocycle frameworks that are otherwise difficult to synthesize.
Collapse
Affiliation(s)
- Ling Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Shuai Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
13
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Wang M, Li B, Gong B, Yao H, Lin A. Synthesis of pyranopyrazoles with a chiral quaternary carbon stereocenter via copper-catalyzed enantioselective [3 + 3] cycloaddition. Chem Commun (Camb) 2022; 58:2850-2853. [PMID: 35129569 DOI: 10.1039/d1cc07058d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed enantioselective [3 + 3] cycloaddition of propargyl carbonates and pyrazolones has been disclosed. This reaction provided an efficient route to synthesize pyranopyrazoles containing a chiral quaternary carbon stereocenter in good yields with good to excellent enantioselectivities. In addition, the hydroxyl group in the products could be conveniently transformed into a variety of functional groups, such as aldehyde, nitrile, alkene, ester and amide groups, which further increased the synthetic value of this reaction.
Collapse
Affiliation(s)
- Meihui Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, China.
| | - Bo Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, China.
| | - Baihui Gong
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, China.
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, China.
| |
Collapse
|
15
|
Li Z, Li D, Xiang H, Huang J, Zheng Y, Zhu C, Cui X, Pi C, Xu H. Copper-catalyzed asymmetric propargylic substitution of anthrones and propargylic esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Khan T, Rajesh P, Arun D, Yaragorla S. Stereoselective sulfenylation of oxindole-derived propargyl alcohols to access sulfenylated-3-alkenyloxindoles. Org Biomol Chem 2021; 19:10201-10209. [PMID: 34792078 DOI: 10.1039/d1ob01921j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ca-catalyzed, tetrasubstituted alkenyl-sulfenylation was achieved using readily available aryl/alkyl thiols and easily prepared oxindole-derived propargyl alcohols under solvent-free conditions. The reaction proceeded with hydrogen bonding assisted regioselective α-thiolation and subsequent calcium catalyzed stereoselective alkenylation to yield E-alkenyl thioethers with high diastereoselectivity.
Collapse
Affiliation(s)
- Tabassum Khan
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | - Pallava Rajesh
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | - Doma Arun
- School of Chemistry, University of Hyderabad, 500046, Telangana, India.
| | | |
Collapse
|
17
|
Ma J, Yang J, Yan K, Sun X, Wei W, Tian L, Wen J. Electrochemical‐Induced C(sp
3
)−H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ma
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Xue Sun
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Wei Wei
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Laijin Tian
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| |
Collapse
|
18
|
Xia JT, Li L, Hu XP. Copper-Catalyzed Decarboxylative Propargylic Alkylation of Enol Carbonates: Stereoselective Synthesis of Quaternary α-Amino Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jin-Tao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
19
|
Li L, Liu Z, Hu X. Copper‐Catalyzed One‐Pot Cascade Cyclization for the Synthesis of Isoindolo[2,1‐
a
]quinoxalines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Li
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049, People's Republic of China
| | - Zhen‐Ting Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023, People's Republic of China
| | - Xiang‐Ping Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023, People's Republic of China
| |
Collapse
|
20
|
Debnath S, Kumar AS, Chauhan S, Kumara Swamy KC. Divergent Reactivity of δ- and β'-Acetoxy Allenoates with 2-Sulfonamidoindoles via Phosphine Catalysis: Entry to Dihydro-α-carboline, α-Carboline, and Spiro-cyclopentene Motifs. J Org Chem 2021; 86:11583-11598. [PMID: 34343010 DOI: 10.1021/acs.joc.1c01137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reactivity of 2-sulfonamidoindoles with acetoxy allenoates under phosphine catalysis depends on the disposition of the acetoxy (OAc) group on the allenoate. In the temperature-controlled [3 + 3] annulations, δ-acetoxy allenoates afforded dihydrocarboline and carboline scaffolds with carbon-nitrogen nucleophilic 2-sulfonamidoindoles, in which allenoate serves as a β-, γ-, and δ-carbon donor. At room temperature (25 °C), dihydro-α-carboline motifs were obtained exclusively through Michael addition, 1,4-proton shift, isomerization, 1,2-proton transfer, phosphine elimination, and aza-Michael addition. The higher temperature (80 °C) cascade protocol using Ph3P-Cs2CO3 combination involves addition-elimination, aza-Claisen rearrangement, tosyl migration, and aromatization as key steps to give α-carbolines containing tosyl functionality at the γ-carbon. In contrast, with β'-acetoxy allenoate, 2-sulfonamidoindole acts only as a carbo-nucleophile in (p-tolyl)3P-directed [4 + 1] spiro-annulation, leading to five-membered spiro-carbocyclic motifs essentially as single diastereomers (dr >20:1) via chemoselective carbo-annulation.
Collapse
Affiliation(s)
- Shubham Debnath
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - A Sanjeeva Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
21
|
|