1
|
Zhang ZF, Zhang CL, Ye S. N-Heterocyclic Carbene/Transition Metal Dual Catalysis. Chemistry 2024; 30:e202402259. [PMID: 39013831 DOI: 10.1002/chem.202402259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
N-heterocyclic carbene catalysis has been developed as a versatile method for the enantioselective synthesis of complex organic molecules in organic chemistry. Merging of N-heterocyclic carbene catalysis with transition metal catalysis holds the potential to achieve unprecedented transformations with broad substrate scope and excellent stereoselectivity, which are unfeasible with individual catalyst. Thus, this dual catalysis has attracted increasing attention, and numerous elegant dual catalytic systems have been established. In this review, we summarize the recent achievements of dual NHC/transition metal catalysis, including the reaction design, mechanistic studies and practical applications.
Collapse
Affiliation(s)
- Zhao-Fei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Debnath C, Bhoi SR, Gandhi S. N-Heterocyclic carbene/palladium synergistic catalysis in organic synthesis. Org Biomol Chem 2024; 22:4613-4624. [PMID: 38804684 DOI: 10.1039/d4ob00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The cooperation of two distinct catalytic cycles to activate different reactive centers leading to a chemical transformation has been classified as synergistic catalysis. The synergistic combination of NHC with palladium catalysis has emerged as a powerful strategy in the last few years. Merging the ability of NHCs to inverse the polarity of a functional group with the unique reactivity of palladium enables transformations that cannot be accomplished by either of these catalysts alone. Despite the associated challenges, such as quenching of catalysts, reactivity mismatch etc., significant development has been achieved in the field of NHC/Pd synergistic catalysis. The recent incorporation of photoredox catalysis with NHC/Pd synergistic catalysis has further advanced this area. This review highlights the developments made in the area of NHC/Pd synergistic catalysis.
Collapse
Affiliation(s)
- Chhanda Debnath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| | - Saswat Ranjan Bhoi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| | - Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| |
Collapse
|
3
|
Ravi Kishore D, Sreenivasulu C, Satyanarayana G, Dapkekar AB. Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions. SYNOPEN 2022. [DOI: 10.1055/a-1896-4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractCoupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the use of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the use of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis; wherein these catalytic systems have been employed for the construction of versatile carbon–carbon [C(sp
3)–C(sp
3), C(sp
3)–C(sp
2), C(sp
2)–C(sp
2)] and carbon–heteroatom (C–N, C–O, C–P, C–S) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, but omitting the reports on photoredox/metal catalysis).1 Introduction2 Cu/Pd-Catalysed Bond Formation2.1 Pd/Cu-Catalysed C(sp
3)–C(sp
2) Bond Formation2.2 Pd/Cu-Catalysed C(sp
2)–C(sp
2) Bond Formation2.3 Pd/Cu-Catalysed C(sp)–C(sp
2) Bond Formation2.4 Pd/Cu-Catalysed C(sp
3)–C(sp
3) Bond Formation2.5 Pd/Cu-Catalysed C–X (X = B, N, P, S, Si) Bond Formation3 Conclusion
Collapse
|
4
|
Chai GL, Zhang P, Yao EZ, Chang J. Enantioselective Conjugate Addition of Boronic Acids to α,β-Unsaturated 2-Acyl Imidazoles Catalyzed by Chiral Diols. J Org Chem 2022; 87:9197-9209. [PMID: 35749308 DOI: 10.1021/acs.joc.2c00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the enantioselective conjugate addition of organic boronic acids to α,β-unsaturated 2-acyl imidazoles using (R)-3,3'-I2-BINOL as the catalyst. The catalytic system shows high efficiency and tolerance to alkenylboronic acids and heteroarylboronic acids. The corresponding Michael addition products were obtained in moderate to excellent yields and with moderate to excellent enantioselectivities (up to 97% ee). A gram-scale reaction was also conducted, and the desired product was obtained in high yield with no erosion in enantioselectivity. Finally, the synthetic utility of the methodology was demonstrated by transforming the 2-acyl imidazole moiety to the corresponding aldehyde, carboxylic acid, ester, and amide derivatives.
Collapse
Affiliation(s)
- Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ping Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Fan T, Song J, Gong L. Asymmetric Redox Allylic Alkylation to Access 3,3′‐Disubstituted Oxindoles Enabled by Ni/NHC Cooperative Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201678. [DOI: 10.1002/anie.202201678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Fan
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Jin Song
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Liu‐Zhu Gong
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Hefei 230026 China
| |
Collapse
|
6
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
7
|
Fan T, Song J, Gong L. Asymmetric Redox Allylic Alkylation to Access 3,3′‐Disubstituted Oxindoles Enabled by Ni/NHC Cooperative Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tao Fan
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Jin Song
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Liu‐Zhu Gong
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Hefei 230026 China
| |
Collapse
|
8
|
Bi W, Yang Y, Ye S, Wang C. Umpolung coupling of pyridine-2-carboxaldehydes and propargylic carbonates via N-heterocyclic carbene/palladium synergetic catalysis. Chem Commun (Camb) 2021; 57:4452-4455. [PMID: 33949494 DOI: 10.1039/d1cc01311d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The umpolung cross-coupling reaction of pyridine-2-carboxaldehydes and propargylic carbonates has been developed for the first time through N-heterocyclic carbene/palladium cooperative catalysis with the judicious selection of the palladium catalyst, ligand and N-heterocyclic carbene, giving the propargylic ketones regioselectively.
Collapse
Affiliation(s)
- Weiyang Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| |
Collapse
|