1
|
Yang DN, Du YN, Wang P, Han MY. Brook-Oxidation Reaction of Acylsilanes: General Access to α-Ketoamides and α-Ketothioamides. Org Lett 2024. [PMID: 39536172 DOI: 10.1021/acs.orglett.4c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A novel chemoselective Brook-oxidation reaction of acylsilanes initiated by the carbamoyl anion has been successfully developed for the first time. This method enables the synthesis of diverse α-ketoamides and α-ketothioamides under transition metal-free and strong oxidant-free conditions with high yields and high chemoselectivity. It also demonstrates tolerance toward a wide range of functional groups. The synthetic utility of this process is underscored by its successful application in the synthesis of an orexin receptor antagonist from acylsilane, highlighting its potential for the development of novel therapeutic agents and further exploration in synthetic chemistry.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Peng Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
2
|
Zhang W, Yang DN, Guo DD, Wang P, Han MY. Chemoselective Synthesis of Unsymmetrical Dithioacetals through Sequential Carbene Insertion and Acetal Exchange of Acylsilanes and Thiols under Visible Light Irradiation. Org Lett 2024; 26:1282-1286. [PMID: 38301045 DOI: 10.1021/acs.orglett.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Dithioacetals are a frequently used motif in synthetic organic chemistry, and most existing reports discuss only symmetrical dithioacetals. Examples of unsymmetrical dithioacetals are scarce, and few general methods for the selective synthesis of these compounds exists. An intriguing visible-light-induced strategy has been established in this work for sequential reactions of S-H insertion and acetal exchange between acylsilanes and two different thiols that deliver a wide variety of unsymmetrical dithioacetals in moderate yields. The unsymmetrical dithioacetals were obtained with high selectivity, and a great variety of functional groups were tolerated.
Collapse
Affiliation(s)
- Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Dan-Ni Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Dou-Dou Guo
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Peng Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
3
|
Wang Y, Ma B, Mao Y, Wang Z, Peng J, Chen C, Li Z. Titanium-catalyzed highly stereoselective anti-Markovnikov intermolecular hydroalkoxylation of alkynes to prepare Z-enol ethers. Org Biomol Chem 2023; 21:9422-9427. [PMID: 37987684 DOI: 10.1039/d3ob01514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Enol ethers are essential synthetic frameworks and widely applied in organic synthesis; however, high regio- and stereo-selective access to enol ethers remains challenging. Herein, we report a titanium-catalyzed stereospecific anti-Markovnikov hydroalkoxylation reaction of alkynes for the synthesis of Z-enol ethers with excellent functional group tolerance and yields. Mechanistic studies showed that the titanium coordinates with the alkyne and then an oxygen anion attacks the π-bond of the alkyne from the backside to provide a trans-oxygen metallation intermediate, which accounts for the high Z-stereoselectivity. Furthermore, Z-enol ethers could be applied as a kind of synthon for late-stage transformations and gram-scale synthesis, which demonstrates their potential value in organic synthesis.
Collapse
Affiliation(s)
- Yang Wang
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| | - Biao Ma
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| | - Yingning Mao
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| | - Zhihui Wang
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| | - Jinsong Peng
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| | - Chunxia Chen
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| | - Zhanyu Li
- Chemical Engineering and Resource Utilization, College of Chemistry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
5
|
Li Q, Liang XX, Zhang W, Han MY. Friedel-Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives. Molecules 2023; 28:5685. [PMID: 37570655 PMCID: PMC10420641 DOI: 10.3390/molecules28155685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
A novel double Friedel-Crafts reaction of acylsilanes in water is described. This strategy enables synthesis of bis(indolyl)methane derivatives with 1-hydroxy or 1-silyl substituents in moderate to high yield. Compared to the 1-silyl-bis(indolyl)methane derivatives from indole substrate, 1-hydroxy-bis(indolyl)methane derivatives were synthesized from the 5-hydroxyindole, and the hydrogen bonds in the 5-hydroxyindole play a crucial role in regulating the reaction selectivity.
Collapse
Affiliation(s)
| | | | | | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (Q.L.); (X.-X.L.); (W.Z.)
| |
Collapse
|
6
|
Zhang D, Ye J, Song Y, Wei Y, Jiang S, Chen Y, Shao X. Isomerization and Stabilization of Amygdalin from Peach Kernels. Molecules 2023; 28:molecules28114550. [PMID: 37299025 DOI: 10.3390/molecules28114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, isomerization conditions, cytotoxic activity, and stabilization of amygdalin from peach kernels were analyzed. Temperatures greater than 40 °C and pHs above 9.0 resulted in a quickly increasing isomer ratio (L-amygdalin/D-amygdalin). At acidic pHs, isomerization was significantly inhibited, even at high temperature. Ethanol inhibited isomerization; the isomer rate decreased with the ethanol concentration increasing. The growth-inhibitory effect on HepG2 cells of D-amygdalin was diminished as the isomer ratio increased, indicating that isomerization reduces the pharmacological activity of D-amygdalin. Extracting amygdalin from peach kernels by ultrasonic power at 432 W and 40 °C in 80% ethanol resulted in a 1.76% yield of amygdalin with a 0.04 isomer ratio. Hydrogel beads prepared by 2% sodium alginate successfully encapsulated the amygdalin, and its encapsulation efficiency and drug loading rate reached 85.93% and 19.21%, respectively. The thermal stability of amygdalin encapsulated in hydrogel beads was significantly improved and reached a slow-release effect in in vitro digestion. This study provides guidance for the processing and storage of amygdalin.
Collapse
Affiliation(s)
- Decai Zhang
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Jianfen Ye
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yu Song
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
7
|
Wang K, Huang J, Liu W, Wu Z, Yu X, Jiang J, He W. Direct Synthesis of 3-Sulfonylquinolines from N-Propargylanilines with Sulfonyl Chlorides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Guan M, Wang S, Luo Y, Cao W, Liu X, Feng X. Catalytic asymmetric addition of thiols to silyl glyoxylates for synthesis of multi-hetero-atom substituted carbon stereocenters. Chem Sci 2021; 12:7498-7503. [PMID: 34163840 PMCID: PMC8171345 DOI: 10.1039/d1sc01096d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A chiral Lewis acid-catalyzed enantioselective addition of thiols to silyl glyoxylates was developed. The reaction proceeds well with a broad range of thiols and acylsilanes, affording the target tertiary chiral α-silyl–α-sulfydryl alcohols with multi-hetero-atom carbon stereocenters in excellent yields (up to 99%) and enantioselectivities (up to 98% ee). A series of control experiments were conducted to elucidate the reaction mechanism. Enantioselective addition of thiols to silyl glyoxylates for construction of a multi-hetero-atom substituted carbon stereocenter was described.![]()
Collapse
Affiliation(s)
- Mingming Guan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|