1
|
Ni C, Ramspoth TF, Reis MC, Harutyunyan SR. Manganese(I)-Catalyzed Access to Enantioenriched Chiral Aziridine Phosphines. Angew Chem Int Ed Engl 2025; 64:e202415623. [PMID: 39552509 DOI: 10.1002/anie.202415623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Herein, we present the first catalytic asymmetric nucleophilic addition of diarylphosphines to 2H-azirines, facilitated by a chiral Mn(I) complex. This method not only provides access to novel class of derivatives of the aziridine core - a structural motif recognized for its antitumor and antibacterial properties - but also introduces a phosphine moiety alongside the generation of an NH moiety within a strained three-membered ring. The discovery of this new Mn(I) complex that both enables the reaction and induces stereoselectivity is pivotal, as it underscores the significant potential of this earth-abundant metal in advancing asymmetric catalysis.
Collapse
Affiliation(s)
- Chuang Ni
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tizian-Frank Ramspoth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), C/ Jenaro de la Fuente s, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
2
|
Kuzmin AV, Shabalin DA. Game of Aliphatics: A Density Functional Theory Study of Base-Catalyzed Substrate-Controlled Dimerizations of Aliphatic Alkynones. J Org Chem 2023; 88:11809-11821. [PMID: 37552877 DOI: 10.1021/acs.joc.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The present work focuses on a comprehensive density functional theory (DFT) study of newly discovered base-catalyzed substrate-controlled dimerizations of aliphatic alkynones. In order to understand the origin of selectivity of the cascade assemblies of 6-methylene-5-oxaspiro[2.4]heptanones and 2-alkenylfurans, structural and electronic properties of neutral and deprotonated alkynone molecules, thermodynamic and kinetic characteristics of the deprotonation of alkynones having diverse C-H active substituents at the carbonyl function under the action of a base, and thermodynamic and kinetic characteristics of possible mechanisms of the discussed cascade reactions were theoretically assessed. The obtained computational results have confirmed and clarified an early qualitative assumption on the key role of the nature of the aliphatic substituent. Apart from fully rationalizing the experimental results, the theoretical DFT data give valuable details and data for predicting the outcome of related base-catalyzed reactions between various electrophilic substrates and nucleophilic species formed from C-H active aliphatic alkynones.
Collapse
Affiliation(s)
- Anton V Kuzmin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk 664033, Russian Federation
| | - Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk 664033, Russian Federation
| |
Collapse
|
3
|
Zhao ZY, Cui M, Irran E, Oestreich M. Copper-Catalyzed Highly Enantioselective Addition of a Silicon Nucleophile to 3-Substituted 2H-Azirines Using an Si-B Reagent. Angew Chem Int Ed Engl 2023; 62:e202215032. [PMID: 36507717 PMCID: PMC10108078 DOI: 10.1002/anie.202215032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
3-Substituted 2H-azirines can be considered strained cyclic ketimines, and highly enantioselective addition reactions of silicon nucleophiles to either acyclic or cyclic ketimines have been elusive so far. The present work closes this gap for those azirines by means of a copper-catalyzed silylation using a silyl boronic ester as a latent silicon nucleophile. The resulting C-silylated, unprotected (N-H) aziridines are obtained in high yields and with excellent enantioselectivities and can be further converted into valuable compounds with hardly any erosion of the enantiomeric excess.
Collapse
Affiliation(s)
- Zhi-Yuan Zhao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Ming Cui
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
4
|
Samultceva SO, Dvorko MY, Shabalin DA, Ushakov IA, Vashchenko AV, Schmidt EY, Trofimov BA. Regio- and stereoselective base-catalyzed assembly of 6-methylene-5-oxaspiro[2.4]heptanones from alkynyl cyclopropyl ketones. Org Biomol Chem 2022; 20:5325-5333. [PMID: 35735091 DOI: 10.1039/d2ob00854h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
6-Methylene-5-oxaspiro[2.4]heptanones have been synthesized via base-catalyzed dimerization of available alkynyl cyclopropyl ketones. The reaction proceeds effectively in the presence of the t-BuOK/t-BuOH/THF catalytic system at room temperature to afford the desired spirocycles in a regio- and stereoselective manner. A wider synthetic utility of alkynyl cyclopropyl ketones as novel building blocks was demonstrated by the synthesis of diverse spirocyclopropanes.
Collapse
Affiliation(s)
- Sofia O Samultceva
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Marina Yu Dvorko
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Igor' A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Alexander V Vashchenko
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Elena Yu Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| |
Collapse
|
5
|
Guerrero-Corella A, Fraile A, Alemán J. Intramolecular Hydrogen-Bond Activation: Strategies, Benefits, and Influence in Catalysis. ACS ORGANIC & INORGANIC AU 2022; 2:197-204. [PMID: 35673681 PMCID: PMC9164241 DOI: 10.1021/acsorginorgau.1c00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
![]()
The activation of
molecules through intramolecular hydrogen-bond
formation to promote chemical reactions appears as a suitable strategy
in organic synthesis, especially for the preparation of chiral compounds
under metal and organocatalytic conditions. The use of this interaction
has enabled reactivity enhancement of reagents, as well as stabilization
of the chemical species and enantiocontrol of the processes.
Collapse
Affiliation(s)
| | - Alberto Fraile
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Ramish SM, Ghorbani-Choghamarani A, Mohammadi M. Microporous hierarchically Zn-MOF as an efficient catalyst for the Hantzsch synthesis of polyhydroquinolines. Sci Rep 2022; 12:1479. [PMID: 35087116 PMCID: PMC8795191 DOI: 10.1038/s41598-022-05411-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
A three-dimensional walnut-like Zn-based MOF microsphere system was designed and synthesized via hydrothermal reaction of zinc salt with 4,6-diamino-2-pyrimidinethiol as a tridentate ligand. Besides, Zn ions were coordinated to the functional groups of the ligand to give a novel Zn-MOF microsphere material. Afterward, the resultant material was thoroughly characterized using various analysis and physico-chemical methods; including, FT-IR, XRD, TGA, EDX, X-ray mapping, SEM, TEM, and BET analysis. The Zn-MOF microspheres were utilized in the Hantzsch reaction for a selective synthesis of asymmetric polyhydroquinolines, using various aromatic aldehydes. Our strategy aims at providing a controlled synthesis of hierarchically nanoporous Zn-MOF microspheres with a well-defined morphology, structure, and excellent catalytic properties. Besides, it would result in having a promising heterogeneous catalyst for a selective synthesis with good yields, short reaction time, a low limit of steric hindrance and electronic effects. Moreover, the heterogeneity of the catalyst is further tested with hot filtration and also the reusability results point.
Collapse
Affiliation(s)
- Sayed Mohammad Ramish
- Department of Chemistry, Faculty of Science, Ilam University, P. O. BOX. 69315516, Ilam, Iran
| | | | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University, P. O. BOX. 69315516, Ilam, Iran
| |
Collapse
|
7
|
Suzuki I, Takenaka Y, Morishita Y, Shibata I. One-step Preparation of N-Unprotected Aziridines from 2H-Azirines by Addition of Ketene Silyl Acetals Catalyzed by Lewis Acids. CHEM LETT 2022. [DOI: 10.1246/cl.210589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Itaru Suzuki
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuya Takenaka
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Morishita
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikuya Shibata
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Yasukawa N, Yamanoue A, Takehara T, Suzuki T, Nakamura S. Asymmetric synthesis of tetrasubstituted cyclic amines via aza-Henry reaction using cinchona alkaloid sulfonamide/zinc(II) catalysts. Chem Commun (Camb) 2021; 58:1318-1321. [PMID: 34950940 DOI: 10.1039/d1cc06492d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first enantioselective aza-Henry reaction of non-activated cyclic iminoesters, derived from cyclic amino acids, has been developed. Good yields and enantioselectivities were observed for the reaction using our original cinchona alkaloid sulfonamide/zinc(II) catalyst. The transition state was proposed to explain the stereoselectivity based on experiments and DFT calculations.
Collapse
Affiliation(s)
- Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Ami Yamanoue
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan. .,Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
9
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
10
|
Fujita K, Miura M, Funahashi Y, Hatanaka T, Nakamura S. Enantioselective Reaction of 2 H-Azirines with Oxazol-5-(4 H)-ones Catalyzed by Cinchona Alkaloid Sulfonamide Catalysts. Org Lett 2021; 23:2104-2108. [PMID: 33650878 DOI: 10.1021/acs.orglett.1c00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective reaction of 2H-azirines with oxazol-5-(4H)-ones (oxazolones) using a cinchona alkaloid sulfonamide catalyst has been developed. The reaction proceeded at the C-2 position of oxazolones to afford products with consecutive tetrasubstituted stereogenic centers in high yield with high diastereo- and enantioselectivity. The obtained aziridines were converted into various chiral compounds without loss of enantiopurity.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Masataka Miura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
11
|
Shamna S, Afsina CMA, Philip RM, Anilkumar G. Recent advances and prospects in the Zn-catalysed Mannich reaction. RSC Adv 2021; 11:9098-9111. [PMID: 35423453 PMCID: PMC8695403 DOI: 10.1039/d0ra10772g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Zn-catalysed reactions are ubiquitously important due to their inexpensive, generally less toxic and atom-economic nature. According to the modern criteria of sustainability, their use in a catalytic manner is a highly desirable goal, especially when using chiral ligands. Considering the relevance of well-established zinc-mediated C-C bond formation reactions, it is relatively surprising that the use of Zn as a catalyst is still underdeveloped, especially in comparison with other transition metals. The vast majority of natural molecules, including proteins, nucleic acids and most biologically active compounds, contain nitrogen. Consequently, developing new synthetic methods for the construction of nitrogenous molecules receives great attention from organic chemists. The Mannich reaction is a very basic and very useful platform for the development of several such nitrogen-containing molecules. In this review, we summarise the recent advancements in the Zn-catalysed Mannich reaction, covering the literature from 2011 to 2020.
Collapse
Affiliation(s)
- Salahudeen Shamna
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala 686560 India +91-481-273-1036
| | - C M A Afsina
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala 686560 India +91-481-273-1036
| | - Rose Mary Philip
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala 686560 India +91-481-273-1036
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala 686560 India +91-481-273-1036
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|