1
|
McGurk DT, Knighten LE, Peña Bú MJ, Christofferson FI, Rich SD, Masih PJ, Kesharwani T. DMTSF-mediated electrophilic cyclization for the synthesis of 3-thiomethyl-substituted benzo[ b]furan derivatives. Org Biomol Chem 2025; 23:1851-1857. [PMID: 39422371 DOI: 10.1039/d4ob00958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Benzofuran is an important backbone for molecules that make up several pharmaceuticals, herbicides/pesticides, and organo-electronics. An environmentally benign dimethyl(methylthio)sulfonium tetrafluoroborate salt was used as an electrophile to induce cyclization of o-alkynyl anisoles to form 2,3-disubstituted benzofurans. The cyclization is performed at ambient reaction conditions, only takes 12 hours to get excellent yields, and shows a high tolerance for various substituted alkynes. Also, a sulfurmethyl group obtained after the cyclization reactions allows for a cascade cyclization, and an alkyne is used in the reaction to create a thieno[3,2-b]benzofuran core structure.
Collapse
Affiliation(s)
- Declan T McGurk
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Langley E Knighten
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Maria J Peña Bú
- Department of Biology, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Faith I Christofferson
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Sierra D Rich
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkway, Pensacola, FL 32514, United States.
| |
Collapse
|
2
|
Chowdhury SR, Kim HY, Oh K. Visible Light-Induced Three-Component Alkoxyalkylation of Alkenes with α-Halocarbonyls and Alcohols. J Org Chem 2024; 89:17621-17634. [PMID: 39526650 DOI: 10.1021/acs.joc.4c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A visible-light-induced three-component alkoxyalkylation of alkenes has been developed under the photocatalysis of fac-Ir(ppy)3. The alkene substrate scope included aryl and aliphatic alkenes as well as electron-rich and electron-deficient alkenes, allowing the facile coupling with a diverse array of α-halocarbonyl compounds. The redox potential-guided orchestration of radical processes with precision allows rapid access to highly functionalized products that are useful building blocks in organic synthesis.
Collapse
Affiliation(s)
- Soumyadeep Roy Chowdhury
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Templ J, Schnürch M. High-Energy Ball Milling Enables an Ultra-Fast Wittig Olefination Under Ambient and Solvent-free Conditions. Angew Chem Int Ed Engl 2024; 63:e202411536. [PMID: 39207262 DOI: 10.1002/anie.202411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
30 Seconds to success!-The Wittig reaction, a fundamental and extensively utilized reaction in organic chemistry, enables the efficient conversion of carbonyl compounds to olefins using phosphonium salts. Traditionally, meticulous reaction setup, including the pre-formation of a reactive ylide species via deprotonation of a phosphonium salt, is crucial for achieving high-yielding reactions under classical solution-based conditions. In this report, we present an unprecedented protocol for an ultra-fast mechanically induced Wittig reaction under solvent-free and ambient conditions, often eliminating the need for tedious ylide pre-formation under strict air and moisture exclusion. A range of aldehydes and ketones were reacted with diverse phosphonium salts under high-energy ball milling conditions, frequently giving access to the respective olefins in only 30 seconds.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/E163, 1060, Vienna, Austria
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/E163, 1060, Vienna, Austria
| |
Collapse
|
4
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Yang Z, Liu J, Xie L. Stabilized Carbon-Centered Radical-Mediated Carbosulfenylation of Styrenes: Modular Synthesis of Sulfur-Containing Glycine and Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402428. [PMID: 38852190 PMCID: PMC11304285 DOI: 10.1002/advs.202402428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to β-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with β-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
6
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
7
|
Yang Z, Liu J, Xie LG. 1,2-Fluorosulfenylation of unactivated alkenes with thiols and a fluoride source promoted by bromodimethylsulfonium bromide. Chem Commun (Camb) 2023; 59:14153-14156. [PMID: 37955272 DOI: 10.1039/d3cc05045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A practical method that enables the fluorosulfenylation of unactivated alkenes processed directly with thiols and fluoride salts is presented. Good to excellent efficiencies and functional group tolerance are observed for both alkene substrates and thiols. The procedure also allows the use of gaseous ethylene as a two-carbon building block for β-fluoro thioether products.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Tang M, Wang Y, Huang S, Xie LG. Synthesis of Aryl Thioalkynes Enabled by Electrophilic Sulfenylation of Alkynes and the Following Elimination. J Org Chem 2023; 88:15466-15472. [PMID: 37861448 DOI: 10.1021/acs.joc.3c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
An unexpected deprotonative process of thiirenium ions is presented, which provides a new synthesis of aryl thioalkynes directly from terminal alkynes via the electrophilic activation of the carbon-carbon triple bonds. The conditions are well compatible with various functional-group-substituted aryl alkynes. The direct elimination from the thiirenium ion intermediate, or its tautomer, benzyl vinyl carbocation, is supported by control experiments and labeling reaction.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
9
|
Das D, Ghosh KG, Garai S, Palasetty C, Devarajulu S. An organo-photocatalyzed visible-light-driven multi-component approach for carbothioaryl/alkylation of activated alkenes via C(sp 3)-H bond functionalization. Org Biomol Chem 2023; 21:7724-7729. [PMID: 37691553 DOI: 10.1039/d3ob01150j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
A visible-light-driven organophotocatalyzed multi-component approach for carbothiolation of activated alkenes is demonstrated under environmentally benign and redox-neutral conditions, involving direct C(sp3)-H functionalization followed by electrophilic alkyl/arylthiolation. The three-component difunctionalization reaction is a complete transition-metal and peroxide-free process conducted under milder conditions. In this composite reaction, by employing bench-stable reagents, the formation of two new C(sp3)-C(sp3) and C(sp3)-S bonds is achieved for a wide variety of substrates, showcasing the excellent functional group tolerance and chemoselectivity of the methodology. Furthermore, the scalability and utilization of natural sunlight instead of artificial blue LEDs, along with the use of an inexpensive and easy-to-prepare pyrylium salt as an organo-photocatalyst, make this protocol greener and more energy efficient.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Krishna Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Sumit Garai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Chandu Palasetty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Sureshkumar Devarajulu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
10
|
Liu F. Direct methylthiolation of C-, S-, and P-nucleophiles with sodium S-methyl thiosulfate. Org Biomol Chem 2023; 21:1153-1157. [PMID: 36628986 DOI: 10.1039/d2ob02056d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A practical and efficient methylthiolation that employed the typical Bunte salt sodium S-methyl sulfothioate as the sulfur source was described. This reagent could react with a variety of compounds such as alkynes, 1,3-diketones, thiols, selenol and H-phosphine oxides, affording methylthiolated products in moderate to excellent yields. The advantages such as easy preparation, air- and moisture-stability and high tolerance of functional groups demonstrated the potential of this reagent to be widely applied in organic synthesis. Notably, the robustness of this reagent was demonstrated by the late-stage modification of drug molecules of erlotinib.
Collapse
Affiliation(s)
- Fanmin Liu
- Division of Specialty Chemicals, Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China.
| |
Collapse
|
11
|
Dong B, Chen Y, Xie S, Zhang J, Shen J, Xie LG. Practical synthesis of unsymmetrical disulfides promoted by bromodimethylsulfonium bromide. Org Biomol Chem 2023; 21:930-934. [PMID: 36625377 DOI: 10.1039/d2ob02124b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative cross-coupling of two thiols is the most direct tool for the synthesis of unsymmetrical disulfides and highly desirable across academia and industry. However, the inevitable formation of significant amounts of the corresponding symmetrical by-products is a major issue. We herein present a method toward the synthesis of unsymmetrical disulfides in which the homo-coupling of the thiols is effectively inhibited by adding the two thiols sequentially, taking advantage of rapid oxidation of the thiol by bromodimethylsulfonium bromide.
Collapse
Affiliation(s)
- Bo Dong
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Shubing Xie
- Anhui Changjiang Institute of Metrology, Hefei 230088, China
| | - Jieying Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
12
|
Tang M, Wei Y, Huang S, Xie LG. Regio- and Stereoselective Synthesis of β-Methylthio Vinyl Triflates. Org Lett 2022; 24:7026-7030. [PMID: 36129306 DOI: 10.1021/acs.orglett.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinyl triflates are commonly employed as electrophilic vinyl sources in complex synthesis. The triflation of enolates is commonly required for the preparation of vinyl triflates, generally under strongly basic conditions. Herein, the reaction between alkynes and dimethyl(methylthio)sulfonium trifluoromethanesulfonate is presented, which leads to the development of a facile synthesis of β-methylthio vinyl triflates in a chemo-, regio-, and stereoselective manner under neutral and extremely simple conditions.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongjiao Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
13
|
Wang J, Tang M, Gu W, Huang S, Xie LG. Synthesis of Pyrrole via Formal Cycloaddition of Allyl Ketone and Amine under Metal-Free Conditions. J Org Chem 2022; 87:12482-12490. [PMID: 36053128 DOI: 10.1021/acs.joc.2c01565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new metal-free synthesis of pyrrole from allyl ketone and amine has been established. The reaction proceeds via an thiolative activation of the C-C double bond with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by a nucleophilic ring-opening addition of primary amine to the generated episulfonium intermediate, and then an internal condensation and aromatization. This mild procedure provides a novel strategy to the construction of substituted pyrroles through a formal [4 + 1] cycloaddition reaction.
Collapse
Affiliation(s)
- Jinli Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weijin Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Zhu Y, Jiang C, Li H, Liu P, Sun P. Electrochemical Aerobic Oxygenation and Nitrogenation of Cyclic Alkenes via C═C Bond Cleavage or Oxygenation and Azidation of Open-Chain Alkenes. J Org Chem 2022; 87:11031-11041. [PMID: 35917464 DOI: 10.1021/acs.joc.2c01293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient strategy involving electrochemical C═C double-bond cleavage and functionalization of cyclic alkenes for the synthesis of ketonitriles is described. This transformation features environmentally friendly conditions and utilizes relatively safe TMSN3 as the nitrogenation reagent and molecular oxygen as the oxidant. For the open-chain alkenes, the reaction gave 1,2-difunctionalized products. A wide range of cyclic alkenes and open-chain alkenes were found to be compatible, providing the corresponding ketonitriles and α-azido aromatic ketones in moderate to good yields.
Collapse
Affiliation(s)
- Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
15
|
Li ZQ, He WJ, Ni HQ, Engle KM. Directed, nickel-catalyzed 1,2-alkylsulfenylation of alkenyl carbonyl compounds. Chem Sci 2022; 13:6567-6572. [PMID: 35756518 PMCID: PMC9172569 DOI: 10.1039/d2sc01563c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/30/2022] [Indexed: 12/20/2022] Open
Abstract
We report a regioselective, nickel-catalyzed syn-1,2-carbosulfenylation of non-conjugated alkenyl carbonyl compounds with alkyl/arylzinc nucleophiles and tailored N-S electrophiles. This method allows the simultaneous installation of a variety of C(sp3) and S(Ar) (or Se(Ar)) groups onto unactivated alkenes, which complements previously developed 1,2-carbosulfenylation methodology in which only C(sp2) nucleophiles are compatible. A bidentate directing auxiliary controls regioselectivity, promotes high syn-stereoselectivity with a variety of E- and Z-internal alkenes, and enables the use of an array of electrophilic sulfenyl (and seleno) electrophiles. Among compatible electrophiles, those with N-alkyl-benzamide leaving groups were found to be especially effective, as determined through comprehensive structure-reactivity mapping.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Wen-Ji He
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
16
|
Li ZQ, Cao Y, Kang T, Engle KM. Electrophilic Sulfur Reagent Design Enables Directed syn-Carbosulfenylation of Unactivated Alkenes. J Am Chem Soc 2022; 144:7189-7197. [PMID: 35436110 DOI: 10.1021/jacs.1c13252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A multi-component approach to structurally complex organosulfur products is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and tailored organosulfur electrophiles. The key to the development of this transformation is the identification of a modular N-alkyl-N-(arylsulfenyl)arenesulfonamide family of sulfur electrophiles. Tuning the electronic and steric properties of the leaving group in these reagents controls pathway selectivity, favoring three-component coupling and suppressing side reactions, as examined via computational studies. The unique syn-stereoselectivity differs from traditional electrophilic sulfenyl transfer processes involving a thiiranium ion intermediate and arises from the directed arylnickel(I) migratory insertion mechanism, as elucidated through reaction kinetics and control experiments. Reactivity and regioselectivity are facilitated by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, alcohols, amines, amides, and azaheterocycles.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yilin Cao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Zhu L, Meng X, Xie L, Shen Q, Li W, Zhang L, Wang C. Regioselective 1,2-carbosulfenylation of unactivated alkenes via directed nickel catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00396a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A removable bidentate picolinamide assisted regioselective 1,2-carbosulfenylation of unactivated alkenes with aryl/alkenylboronic acids and disulfide electrophiles has been developed with a cost-effective and air-stable Ni(ii) precatalyst.
Collapse
Affiliation(s)
- Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiao Meng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Leipeng Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qiuyang Shen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Wenyi Li
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421000, People's Republic of China
| | - Lanlan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
18
|
Dai C, Shen Y, Wei Y, Liu P, Sun P. Electrochemical Oxidative Difunctionalization of Alkenes to Access α-Oxygenated Ketones. J Org Chem 2021; 86:13711-13719. [PMID: 34523934 DOI: 10.1021/acs.joc.1c01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dioxygenation of alkenes was developed by the combination of electrochemical synthesis and aerobic oxidation, leading to easy accessibility of α-oxygenated ketones in an eco-friendly fashion. Using air as the oxygen source and the absence of transition metals were the critical features of this protocol. A wide range of alkenes and N-hydroxyimides were found to be compatible and provided α-oxygenated ketones in moderate to high yields.
Collapse
Affiliation(s)
- Changhui Dai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yijie Shen
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
19
|
Chen S, Wang J, Xie LG. Transition metal-free formal hydro/deuteromethylthiolation of unactivated alkenes. Org Biomol Chem 2021; 19:4037-4042. [PMID: 33876174 DOI: 10.1039/d1ob00413a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methylthioether is involved in the methylthiotransfer process in organisms, and therefore its functionality is of paramount importance to living organisms. Several methods for the installation of the methylthio group in small molecules have been reported previously; however, procedures starting from unactivated alkenes are rare. Herein, we report a formal hydro/deuteromethylthiolation of alkenes by using dimethyl(methylthio)sulfonium trifluoromethanesulfonate as the stimulator and sodium borohydride/deuteride as the hydrogen/deuterium source. The process represents a mild, transition metal-free and methanethiol-free route towards the synthesis of methylthioethers from unactivated alkenes.
Collapse
Affiliation(s)
- Shuangyang Chen
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jia Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Lan-Gui Xie
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|